5 research outputs found
Human Treated Dentin Matrix Hydrogel as a Drug Delivery Scaffold for Regenerative Endodontics
Introduction: The objective of the current study was to develop a human treated dentin matrix (hTDM) hydrogel for use as a scaffold to allow the controlled release of an antimicrobial agent for regenerative endodontics. Materials and Methods: Human extracted teeth were treated via chemical demineralization using ethylene diamine tetra-acetic acid solution to produce hTDM powder. Fourier transform infrared spectroscopy (FTIR) was conducted to determine the functional groups of hTDM, scanning electron microscopy (SEM) was used to define the morphology/particle size of hTDM, and energy dispersive X-ray analysis was performed to identify the superficial apatite groups. Prepared hTDM powder was added to the amoxicillin-clavulanate mixture with a mass ratio of 1:1. Then, the combination was dripped into a 5% (w/v) calcium chloride solution. Antibiotic release profiles were evaluated for 14 days via high performance liquid chromatography (HPLC). Hydrogel degradation properties were studied for 14 days using 10 mL of phosphate buffered saline (PBS). Encapsulation efficiency was determined by HPLC, while minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of amoxicillin-clavulanate were determined against Enterococcus faecalis (E. faecalis). The antibacterial activity of amoxicillin-clavulanate against E. faecalis was investigated for 14 days via agar diffusion test. Statistical analysis was performed with the Shapiro-Wilk test (P=0.05). Results: hTDM showed statistically a significant difference for percentage weight change (P=0.1). The encapsulation efficiencies for hTDM hydrogel with antibiotic and hydrogel with antibiotic was 96.08%±0.02 and 94.62%±0.11, respectively. MIC and MBC values of amoxicillin-clavulanate against E. faecalis were 2.4 µg/mL and 9.6 µg/mL, respectively. The antibacterial activity of antibiotic loaded hTDM hydrogels was significantly greater than loaded hydrogels alone by 31% after 4 and 100% at 14 days, respectively (P≤0.001). Conclusions: This in vitro study showed antibiotic-loaded injectable hTDM hydrogel could be an alternative system to transfer antibiotic-based intracanal medicaments for use in regenerative endodontics
Fracture strength and fractographic analysis of zirconia copings treated with four experimental silane primers
This study evaluated and compared the effect of new four experimental silane coupling agents on the fracture strength of zirconia copings. The findings were supported with fractographic and finite element analyses. All together 125 zirconia copings with a ?wall thickness of 0.6mm were fabricated on identical nickel-chromium master dies and then divided randomly into five groups (n=25). Four test groups were prepared according the experimental silane primer (labeled: OIWA1, OIWA2, OIWA3 and OIWA4) ?and one control group without silanization. The silane monomers used were: ?3-methacryloxypropyltrimethoxysilane (in OIWA1), ?3-acryloxypropyltrimethoxysilane (in OIWA2), ?3-?isocyanatopropyltriethoxysilane (in OIWA3) and styrylethyltrimethoxysilane (in OIWA4). Tribochemical sandblasting (silica-coating) treatment was performed to the inner surface of the copings in the ?test groups. All the specimens were silanized at the inner surfaces of the zirconia copings. Self-?adhesive universal resin cement was used to cement the copings to ?the underlying master die. Zirconia copings were vertically loaded on the ?cusp ?area until the first crack failure was occurred using Precision Universal Tester ?at a ?constant crosshead speed of 1mm/min. Then, the machine ?was manually controlled to cause more failure ?to further determine the texture of fracture. Three dimensional finite element analysis and fractography were performed to support the fracture strength findings. Based on the finite element analysis results, zirconia silanized with ?3-acryloyloxypropyltrimethoxysilane showed the highest fracture strength with a mean of ?963.75?N (SD 4.5N), while zirconia copings silanized with ?3-methacryloyloxypropyltrimethoxysilane showed a mean fracture strength value of ?925.65N (SD 2.4N). Styrylethyltrimethoxysilane-silanised zirconia showed mean fracture strength of 895.95N (SD 3.5N). Adding silane coupling agents to the resin-zirconia interface increased the fracture strengths significantly (ANOVA, p<0.05). Silanization with four new experimental silane primers in vitro produced significantly ?greater fracture strength than the control group not treated with the test silane.
Influence of a Nanoporous Zirconia Implant Surface of on Cell Viability of Human Osteoblasts
Purpose: The dense nonretentive surface of zirconia implants was modified into a nanoporous surface using selective infiltration etching surface treatment. The aim of this study was to investigate the influence of such a nanoporous modified zirconia surface on the attachment of human osteoblasts. Materials and Methods: Human osteoblasts were cultured for 21 days on (i) selective infiltration etched zirconia (nanoporous surface), (ii) polished zirconia, (iii) polished titanium, or (iv) airborne particle abraded acid etched (SLA) titanium disks. After the culture period the following parameters were assessed: number of cells, the morphology of the cells, the attachment of the cells, alkaline phosphatase activity, and the level of total protein (α= 0.05). Results: Statistical analysis revealed a significantly higher cell count on the third (F = 17.4, p < 0.001) and eighth day (F = 163, p < 0.001) for nanoporous zirconia and SLA titanium surfaces compared to polished specimens. The number of cells (nanoporous zirconia 160 ± 20/mm2, SLA titanium 133 ± 15/mm2) and cell size (nanoporous zirconia 50.7 ± 3 μm, SLA titanium 42.5 ± 4 μm) were significantly higher than polished specimens. Nanoporous zirconia specimens demonstrated comparable alkaline phosphatase activity (0.0036 ± 0.0035 ng/μl) and intracellular protein content (72.7 ± 0.9 ng/μl) compared to other tested groups. Scanning electron microscopy revealed that cells attached on the polished surface using finger-like processes, whereas on the nanoporous surface, finger-like processes were not observed, as the cell membrane appeared to be in close proximity to the underlying surface. Conclusion: The findings of this study suggest that a nanoporous zirconia surface favors cell growth and attachment compared to a polished surface. It was proposed that a nanoporous zirconia surface may improve clinical performance of zirconia implants
