75 research outputs found
Desalination by Membrane Distillation
At present, around 25% of water desalination processes are based on distillation. Similar to classical distillation, membrane distillation is a phased-change process in which a hydrophobic membrane separates two phases. Membrane distillation is considered an emerging player in the desalination, food processing and water treatment market. Due to its high salt rejection, less fouling propensity, operating at moderate temperature and pressure, membrane distillation is considered as a future sustainable desalination technology. The distillation process is quite well known in desalination. However, membrane distillation emerged a few decades ago, and a thorough understanding is needed to adapt this technique in the near future. This review chapter introduces the classical distillation and membrane distillation as an emerging technology in the desalination arena. Heat and mass transfer and thermodynamics in membrane distillation, characteristics of the performance metrics of membrane distillation are also described. Finally, the performance evaluation of MD is presented. The possibility of using low-grade heat in membrane distillation allows it to integrate directly to solar energy and industrial waste heat
Smart and sustainable regeneration of fouled desalination membranes using artificial intelligence
During the desalination process, scaling, fouling, and degradation are associated issues that lead to a drop in the separation performance of membranes. Membrane regeneration emerges as a critical technology in which upcycling and downcycling can offer a promising avenue for promoting sustainable membrane lifecycle management. Multiple research papers and reviews have critically analyzed the regeneration of membranes, which explains the end-of-cycle assessment and cost analysis of membrane recycling. However, challenges associated with the conventional and innovative regeneration processes are not yet analyzed. The potential impact of artificial intelligence (AI) on membrane regeneration is not explained in the literature. This review paper aims to explore the synergistic relationship between AI and membrane regeneration, elucidating the principles, challenges, opportunities, and emerging trends in this rapidly evolving field. By examining the role of AI techniques in enhancing the understanding, monitoring, and control of regeneration membrane processes, as well as their applications in optimizing regeneration strategies and addressing end-of-life considerations, this paper seeks to provide insights into the transformative potential of AI in reshaping the landscape of membrane regeneration
A family of Fe-N-C oxygen reduction electrocatalysts for microbial fuel cell (MFC) application: Relationships between surface chemistry and performances
© 2016 The Author(s) Different iron-based cathode catalysts have been studied for oxygen reduction reaction (ORR) in neutral media and then applied into microbial fuel cells (MFC). The catalysts have been synthesized using sacrificial support method (SSM) using eight different organic precursors named Niclosamide, Ricobendazole, Guanosine, Succinylsulfathiazole, Sulfacetamide, Quinine, Sulfadiazine and Pyrazinamide. Linear Sweep Voltammetry (LSV) curves were obtained for the catalysts using a O2 saturated in 0.1M potassium phosphate buffer and 0.1M KCl solution and a Rotating Ring Disk Electrode (RRDE) setup in order to study the ORR characteristics. Additionally, we analyze the peroxide yield obtained for each catalyst which helps us determine the reaction kinetics. Those catalysts have been mixed with activated carbon (AC), carbon black (CB) and PTFE and pressed on a metallic mesh forming a pellet-like gas diffusion electrode (GDE). Results showed that Fe-Ricobendazole, Fe-Niclosamide and Fe-Pyrazinamide had the highest cathode polarization curves and highest power densities output that was above 200μWcm−2. Fe-Ricobendazole, Fe-Niclosamide, Fe-Pyrazinamide, Fe-Guanosine Fe-Succinylsulfathiazole and Fe-Sulfacetamide outperformed compared to Pt cathode. Fe-Sulfadiazene and Fe-Quinine performed better than AC used as control but less than Pt. Correlation of surface composition with performance showed that power density achieved is directly related to the total amount of nitrogen, and in particularly, N coordinated to metal and pyridinic and pyrrolic types while larger amounts of graphitic nitrogen result in worse performance
Influence of platinum group metal-free catalyst synthesis on microbial fuel cell performance
© 2017 The Authors Platinum group metal-free (PGM-free) ORR catalysts from the Fe-N-C family were synthesized using sacrificial support method (SSM) technique. Six experimental steps were used during the synthesis: 1) mixing the precursor, the metal salt, and the silica template; 2) first pyrolysis in hydrogen rich atmosphere; 3) ball milling; 4) etching the silica template using harsh acids environment; 5) the second pyrolysis in ammonia rich atmosphere; 6) final ball milling. Three independent batches were fabricated following the same procedure. The effect of each synthetic parameters on the surface chemistry and the electrocatalytic performance in neutral media was studied. Rotating ring disk electrode (RRDE) experiment showed an increase in half wave potential and limiting current after the pyrolysis steps. The additional improvement was observed after etching and performing the second pyrolysis. A similar trend was seen in microbial fuel cells (MFCs), in which the power output increased from 167 ± 2 μW cm−2 to 214 ± 5 μW cm−2. X-ray Photoelectron Spectroscopy (XPS) was used to evaluate surface chemistry of catalysts obtained after each synthetic step. The changes in chemical composition were directly correlated with the improvements in performance. We report outstanding reproducibility in both composition and performance among the three different batches
Microbial fuel cells: From fundamentals to applications. A review
© 2017 The Author(s) In the past 10–15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described
Neuro-Electronic Interface using Carbon Nanotubes
The aim of this work is to use of Carbon Nanotubes to improve the interface between electrode and neurons. Passive Microelectrode Array sample was fabricated by microfabrication technique and Carbon nanotubes were deposited using dielectrophoresis. Characterization of electrode electrolyte interface was done through electrical impedance spectroscopy. Neurons were cultured over Passive Microelectrode Array and neurite growths were observed.The aim of this work is to use of Carbon Nanotubes to improve the interface between electrode and neurons. Passive Microelectrode Array sample was fabricated by microfabrication technique and Carbon nanotubes were deposited using dielectrophoresis. Characterization of electrode electrolyte interface was done through electrical impedance spectroscopy. Neurons were cultured over Passive Microelectrode Array and neurite growths were observed.katedra biomedicínské technik
"I Never Have Such a Sickly Ship Before": Diet, Disease, and Mortality in 18th-Century Atlantic Slaving Voyages
“Armed with A Knife in Her Bosom”: Gender, Violence, and The carceral Consequences of Rage in the Late 19th Century
- …
