3 research outputs found

    High-resolution three-dimensional imaging of topological textures in single-diamond networks

    Full text link
    Highly periodic structures are often said to convey the beauty of nature. However, most material properties are strongly influenced by the defects they contain. On the mesoscopic scale, molecular self-assembly exemplifies this interplay; thermodynamic principles determine short-range order, but long-range order is mainly impeded by the kinetic history of the material and by thermal fluctuations. For the development of self-assembly technologies, it is imperative to characterise and understand the interplay between self-assembled order and defect-induced disorder. Here we used synchrotron-based hard X-ray nanotomography to reveal a pair of extended topological defects within a self-assembled single-diamond network morphology. These defects are morphologically similar to the comet and trefoil patterns of equal and opposite half-integer topological charges observed in liquid crystals and appear to maintain a constant separation across the thickness of the sample, resembling pairs of full vortices in superconductors and other hard condensed matter systems. These results are expected to open new windows to study defect formation in soft condensed matter, particularly in biological systems where most structures are formed by self-assembly.Comment: Nat. Nanotechnol. (2024

    Directed Self-Assembly of Diamond Networks in Triblock Terpolymer Films on Patterned Substrates

    No full text
    Block copolymers (BCPs) are particularly effective in creating soft nanostructured templates for transferring complex 3D network structures into inorganic materials that are difficult to fabricate by other methods. However, achieving control of the local ordering within these 3D networks over large areas remains a significant obstacle to advancing material properties. Here, we address this challenge by directing the self-assembly of a 3D alternating diamond morphology by solvent vapor annealing of a triblock terpolymer film on a chemically patterned substrate. The hexagonal substrate patterns were designed to match a (111) plane of the diamond lattice. Commensurability between the sparse substrate pattern and the BCP lattice produced a uniformly ordered diamond network within the polymer film, as confirmed by a combination of atomic force microscopy and cross-sectional imaging using focused ion beam scanning electron microscopy. The successful replication of the complex and well-ordered 3D network structure in gold promises to advance optical metamaterials and has potential applications in nanophotonics
    corecore