582 research outputs found

    Human Schistosome Infection and Allergic Sensitisation

    Get PDF
    Several field studies have reported an inverse relationship between the prevalence of helminth infections and that of allergic sensitisation/atopy. Recent studies show that immune responses induced by helminth parasites are, to an extent, comparable to allergic sensitisation. However, helminth products induce regulatory responses capable of inhibiting not only antiparasite immune responses, but also allergic sensitisation. The relative effects of this immunomodulation on the development of protective schistosome-specific responses in humans has yet to be demonstrated at population level, and the clinical significance of immunomodulation of allergic disease is still controversial. Nonetheless, similarities in immune responses against helminths and allergens pose interesting mechanistic and evolutionary questions. This paper examines the epidemiology, biology and immunology of allergic sensitisation/atopy, and schistosome infection in human populations

    Helminth parasite proteomics: from experimental models to human infections

    Get PDF
    Schistosomiasis is a major human helminth infection endemic in developing countries. Urogenital schistosomiasis, caused by S. haematobium, is the most prevalent human schistosome disease in sub-Saharan Africa. Currently control of schistosome infection is by treatment of infected people with the anthelmintic drug praziquantel, but there are calls for continued efforts to develop a vaccine against the parasites. In order for successful vaccine development, it is necessary to understand the biology and molecular characteristics of the parasite. Ultimately, there is need to understand the nature and dynamics of the relationship between the parasite and the natural host. Thus, my studies have focused on molecular characterization of different parasite stages and integrating this information with quantitative approaches to investigate the nature and development of protective immunity against schistosomes in humans. Proteomics has proved a powerful tool in these studies allowing the proteins expressed by the parasite to be characterized at a molecular and immunological level. In this review, the application of proteomic approaches to understanding the human-schistosome relationship as well as testing specific hypotheses on the nature and development of schistosome-specific immune responses is discussed. The contribution of these approaches to informing schistosome vaccine development is highlighted

    Similar cellular responses after treatment with either praziquantel or oxamniquine in Schistosoma mansoni infection.

    Get PDF
    The effect of treatment with either oxamniquine or praziquantel on S.mansoni specific IFN-gamma, IL-4, IL-5 and IL-10 was compared on PBMC which were collected pretreatment, 6 and 18 weeks post treatment. Using sandwich ELISA on the supernatants harvested from the PBMC stimulation by crude S. mansoni SEA and SWAP antigens after 5 days the levels of PBMC proliferation and cytokine production were similar according to treatment with either praziquantel or oxamniquine. Before treatment, infected groups showed low ratios, of IL-4:IFN-gamma, IL-5:IFNgamma and IL-10:IFN-gamma, indicating that IFN-gamma was high in the infected individuals. The general increase in immuno-modulation was observed post-treatment with elevated immune reactivity and cytokine production in both treatment groups. Treatment induced significant increases in levels of IL-4 (p < 0.05), IL-5 (p < 0.0001) and IL-10 (p < 0.05) cytokines 6 and 18 weeks after treatment. There were no significant differences in the increase in IL-4, IL-5 and IL-10 between children treated with praziquantel or oxamniquine. Pre-treatment IFN-gamma and IL-5 levels were positively correlated with infection (p < 0.001), while post treatment IL-4 cytokine levels were negatively correlated with baseline infection status (p < 0.001). The results suggest that treatment-induced immune responses are similar for both common anti-schistosome drugs praziquantel or oxamniquine having similar and immunizing effect

    Africa should set its own health-research agenda

    Get PDF

    Schistosome Infection Intensity Is Inversely Related to Auto-Reactive Antibody Levels

    Get PDF
    Acquired immunity against helminths is characterised by a complex interplay between the effector Th1 and Th2 immune responses and it slowly manifests with age as a result of cumulative exposure to parasite antigens. Data from experimental models suggest that immunity is also influenced by regulatory T cells (Treg), but as yet studies on Treg in human schistosome infections are limited. This study investigated the relationship between schistosome infection intensity and the two cell populations regulatory T cells (TREG: CD4(+(dim))CD25(+(high))FOXP3(+)CD127(low)), and activated (Tact: CD4(+)CD25(+)FOXP3(-)) T cells in Zimbabweans exposed to Schistosoma haematobium parasites. Participants were partitioned into two age groups, young children (8-13 years) in whom schistosome infection levels were rising to peak and older people (14+ years) with declining infection levels. The relationship between Tact proportions and schistosome infection intensity remained unchanged with age. However Treg proportions rose significantly with increasing infection in the younger age group. In contrast Treg were negatively correlated to infection intensity in the older age group. The relative proportions of regulatory T cells differ significantly between young individuals in whom high infection is associated with an enhanced regulatory phenotype and older infected patients in whom the regulatory response is attenuated. This may influence or reflect different stages of the development of protective schistosome acquired immunity and immunopathogenesis

    Immunological consequences of antihelminthic treatment in preschool children exposed to urogenital schistosome infection

    Get PDF
    Urogenital schistosomiasis, due to Schistosoma haematobium, is endemic in sub-Saharan Africa. Control is by targeted treatment with praziquantel but preschool age children are excluded from control programs. Immunological studies on the effect of treatment at this young age are scarce. In light of studies in older individuals showing that praziquantel alters antischistosome immune responses and responses to bystander antigens, this study aims to investigate how these responses would be affected by treatment at this young age. Antibody responses directed against schistosome antigens, Plasmodium falciparum crude and recombinant antigens, and the allergen house dust mite were measured in children aged 3 to 5 years before and 6 weeks after treatment. The change in serological recognition of schistosome proteins was also investigated. Treatment augmented antischistosome IgM and IgE responses. The increase in IgE responses directed against adult worm antigens was accompanied by enhanced antigen recognition by sera from the children. Antibody responses directed against Plasmodium antigens were not significantly affected by praziquantel treatment nor were levels of allergen specific responses. Overall, praziquantel treatment enhanced, quantitatively and qualitatively, the antiworm responses associated with protective immunity but did not alter Plasmodium-specific responses or allergen-specific responses which mediate pathology in allergic disease

    Soluble CD23 Levels are Inversely Associated with Atopy and Parasite-Specific IgE Levels but Not with Polyclonal IgE Levels in People Exposed to Helminth Infection

    Get PDF
    BACKGROUND: Protective acquired immunity against helminths and allergic sensitisation are both characterised by high IgE antibody levels. Levels of IgE antibodies are naturally tightly regulated by several mechanisms including binding of the CD23 receptor. Following observations that helminth infections and allergic sensitisation may co-present, the current study aims to investigate the relationship between the soluble CD23 (sCD23) receptor, parasite-specific IgE responses and allergic sensitisation in people exposed to the helminth parasite Schistosoma haematobium. METHODS: A cohort of 434 participants was recruited in two villages with different levels of S. haematobium infection in Zimbabwe. Serum levels of the 25-kDa fragment of sCD23 were related to levels of schistosome infection intensity, allergen (house dust mite, HDM) and schistosome-specific IgE, total IgE and skin sensitisation to HDM. RESULTS: sCD23 levels rose significantly with schistosome infection intensity but declined significantly with schistosome-specific IgE levels. Furthermore, sCD23 levels were negatively associated with skin sensitisation and IgE reactivity against HDM, but showed no relationship with total IgE. CONCLUSION: The results are consistent with the suppression of parasite and allergen-specific IgE levels by sCD23. Further mechanistic studies will determine the relevance of this potential regulatory mechanism in the development of helminth-specific immune responses in atopic individuals

    Differences in the faecal microbiome in Schistosoma haematobium infected children vs. uninfected children

    Get PDF
    BACKGROUND: Several infectious diseases and therapeutic interventions cause gut microbe dysbiosis and associated pathology. We characterised the gut microbiome of children exposed to the helminth Schistosoma haematobium pre- and post-treatment with the drug praziquantel (PZQ), with the aim to compare the gut microbiome structure (abundance and diversity) in schistosome infected vs. uninfected children. METHODS: Stool DNA from 139 children aged six months to 13 years old; with S. haematobium infection prevalence of 27.34% was extracted at baseline. 12 weeks following antihelminthic treatment with praziqunatel, stool DNA was collected from 62 of the 139 children. The 16S rRNA genes were sequenced from the baseline and post-treatment samples and the sequence data, clustered into operational taxonomic units (OTUs). The OTU data were analysed using multivariate analyses and paired T-test. RESULTS: Pre-treatment, the most abundant phyla were Bacteroidetes, followed by Firmicutes and Proteobacteria respectively. The relative abundance of taxa among bacterial classes showed limited variation by age group or sex and the bacterial communities had similar overall compositions. Although there were no overall differences in the microbiome structure across the whole age range, the abundance of 21 OTUs varied significantly with age (FDR<0.05). Some OTUs including Veillonella, Streptococcus, Bacteroides and Helicobacter were more abundant in children ≤ 1 year old compared to older children. Furthermore, the gut microbiome differed in schistosome infected vs. uninfected children with 27 OTU occurring in infected but not uninfected children, for 5 of these all Prevotella, the difference was statistically significant (p <0.05) with FDR <0.05. PZQ treatment did not alter the microbiome structure in infected or uninfected children from that observed at baseline. CONCLUSIONS: There are significant differences in the gut microbiome structure of infected vs. uninfected children and the differences were refractory to PZQ treatment
    corecore