425 research outputs found

    Comments on Organizational Aspects of the Inventory Control Problem

    Get PDF

    On the Two Bin Inventory Policy: An Application of the Arrow-Harris-Marschak Model

    Get PDF

    Ecosystem Regime Change Inferred from the Distribution of Trace Metals in Lake Erie Sediments

    Get PDF
    Many freshwater and coastal marine ecosystems across the world may have undergone an ecosystem regime change due to a combination of rising anthropogenic disturbances and regional climate change. Such a change in aquatic ecosystems is commonly seen as shifts in algal species. But considerably less detail is known about the eutrophication history in terms of changes in algal productivity, particularly for a large lake with a great deal of spatial variability. Here we present an analysis of trace metals (Cu, Ni, Cd, and Pb) on a sediment core recovered from Lake Erie, off the Vermilion coast of northern Ohio, USA, to reconstruct the eutrophication history of the lake over the past 210 years. Following a slow eutrophication during European settlement, Lake Erie experienced a period of accelerated eutrophication, leading to an ecosystem regime transition into a eutrophic lake state in 1950. Our results suggested that the lake\u27s biological productivity has ever since maintained fairly high even though a significant input reduction was realized from rigorous nutrient abatements that began as early as in 1969. This work underscored the role of in-lake biogeochemical cycling in nutrient dynamics of this already eutrophic lake

    Implementation of edTPA Completion Prior to Student Teaching

    Get PDF
    In many states, teacher candidates are required to complete the Education Teacher Performance Assessment (edTPA). Faculty at a Midwestern university recently piloted implementing edTPA completion prior to student teaching and revealed (a) an easing of tensions associated with edTPA completion, (b) a positive impact on the student teaching experience, and (c) the ability to use edTPA to formatively support candidate growth. Candidates successfully completed the edTPA prior to student teaching, which provided the opportunity to apply the knowledge and skills learned from the assessment, set goals for continued growth, and maintain the focus on the intended goals of the student teaching experience

    Multilocation Corn Stover Harvest Effects on Crop Yields and Nutrient Removal

    Get PDF
    Corn (Zea mays L.) stover was identified as an important feedstock for cellulosic bioenergy production because of the extensive area upon which the crop is already grown. This report summarizes 239 site-years of field research examining effects of zero, moderate, and high stover removal rates at 36 sites in seven different states. Grain and stover yields from all sites as well as N, P, and K removal from 28 sites are summarized for nine longitude and six latitude bands, two tillage practices (conventional vs no tillage), two stover-harvest methods (machine vs calculated), and two crop rotations {continuous corn (maize) vs corn/soybean [Glycine max (L.) Merr.]}. Mean grain yields ranged from 5.0 to 12.0 Mg ha−1 (80 to 192 bu ac−1). Harvesting an average of 3.9 or 7.2 Mg ha−1(1.7 or 3.2 tons ac−1) of the corn stover resulted in a slight increase in grain yield at 57 and 51 % of the sites, respectively. Average no-till grain yields were significantly lower than with conventional tillage when stover was not harvested, but not when it was collected. Plant samples collected between physiological maturity and combine harvest showed that compared to not harvesting stover, N, P, and K removal was increased by 24, 2.7, and 31 kg ha−1, respectively, with moderate (3.9 Mg ha−1) harvest and by 47, 5.5, and 62 kg ha−1, respectively, with high (7.2 Mg ha−1) removal. This data will be useful for verifying simulation models and available corn stover feedstock projections, but is too variable for planning site-specific stover harvest

    U.S. Billion-ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    Get PDF
    The Report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of “potential” biomass within the contiguous United States based on numerous assumptions about current and future inventory and production capacity, availability, and technology. In the 2005 BTS, a strategic analysis was undertaken to determine if U.S. agriculture and forest resources have the capability to potentially produce at least one billion dry tons of biomass annually, in a sustainable manner—enough to displace approximately 30% of the country’s present petroleum consumption. To ensure reasonable confidence in the study results, an effort was made to use relatively conservative assumptions. However, for both agriculture and forestry, the resource potential was not restricted by price. That is, all identified biomass was potentially available, even though some potential feedstock would more than likely be too expensive to actually be economically available. In addition to updating the 2005 study, this report attempts to address a number of its shortcoming

    Perdeuteration of cholesterol for neutron scattering applications using recombinant Pichia pastoris

    Get PDF
    Deuteration of biomolecules has a great impact on both quality and scope of neutron scattering experiments. Cholesterol is a major component of mammalian cells, where it plays a critical role in membrane permeability, rigidity and dynamics, and contributes to specific membrane structures such as lipid rafts. Cholesterol is the main cargo in low and high-density lipoprotein complexes (i.e. LDL, HDL) and is directly implicated in several pathogenic conditions such as coronary artery disease which leads to 17 million deaths annually. Neutron scattering studies on membranes or lipid-protein complexes exploiting contrast variation have been limited by the lack of availability of fully deuterated biomolecules and especially perdeuterated cholesterol. The availability of perdeuterated cholesterol provides a unique way of probing the structural and dynamical properties of the lipoprotein complexes that underly many of these disease conditions. Here we describe a procedure for in vivo production of perdeuterated recombinant cholesterol in lipid-engineered Pichia pastoris. Using flask and fed-batch fermenter cultures in deuterated minimal medium perdeuteration of the purified cholesterol was verified by mass spectrometry and its use in a neutron scattering study was demonstrated using neutron reflectometry
    corecore