97 research outputs found
Cumulant expansion of the periodic Anderson model in infinite dimension
The diagrammatic cumulant expansion for the periodic Anderson model with
infinite Coulomb repulsion () is considered here for an hypercubic
lattice of infinite dimension (). The same type of simplifications
obtained by Metzner for the cumulant expansion of the Hubbard model in the
limit of , are shown to be also valid for the periodic Anderson
model.Comment: 13 pages, 7 figures.ps. To be published in J. Phys. A: Mathematical
and General (1997
Electronic State and Magnetic Susceptibility in Orbitally Degenerate (J=5/2) Periodic Anderson Model
Magnetic susceptibility in a heavy fermion systemis composed of the Pauli
term (\chi_P) and the Van-Vleck term (\chi_V). The latter comes from the
interband excitation, where f-orbital degeneracy is essential. In this work, we
study \chi_P and \chi_V in the orbitally degenerate (J=5/2) periodic Anderson
model for both the metallic and insulating cases. The effect of the correlation
between f-electrons is investigated using the self-consistent second-order
perturbation theory. The main results are as follows. (i) Sixfold degenerate
model: both \chi_P and \chi_V are enhanced by a factor of 1/z (z is the
renormalization constant). (ii) Nondegenerate model: only \chi_P is enhanced by
1/z. Thus, orbital degeneracy is indispensable for enhancement of \chi_V.
Moreover, orbital degeneracy reduces the Wilson ratio and stabilizes a
nonmagnetic Fermi liquid state.Comment: 4 pages, revtex, to be published in J. Phys. Soc. Jpn. (No.8
Calculation of Optical Conductivity, Resistivity and Thermopower of Filled Skutterudite CeRuSb based on a Realistic Tight-binding Model with Strong Correlation
The filled-skutterudite compound CeRuSb shows a pseudo-gap
structure in the optical conductivity spectra similar to the Kondo insulators,
but metallic behavior below 80 K. The resistivity shows a large peak at 80 K,
and the Seebeck coefficient is positive and also shows a large peak at nearly
the same temperature. In order to explain all these features, a simplified
tight-binding model, which captures the essential features of the band
calculation, is proposed. Using this model and introducing the correlation
effect within the framework of the dynamical mean field approximation and the
iterative perturbation theory, the temperature dependences of the optical
conductivity, resistivity and the Seebeck coefficient are calculated, which can
explain the experiments.Comment: 4 pages, 6 figure
Interplay of Spin-Orbit Interaction and Electron Correlation on the Van Vleck Susceptibility in Transition Metal Compounds
We have studied the effects of electron correlation on Van Vleck
susceptibility () in transition metal compounds. A typical
crossover behavior is found for the correlation effect on as
sweeping spin-orbit interaction, . For a small , orbital
fluctuation plays a dominant role in the correlation enhancement of
; however, the enhancement rate is rather small. In contrast,
for an intermediate , shows a substantial increase,
accompanied by the development of spin fluctuation. We will discuss the
behavior of in association with the results of Knight-shift
experiments on SrRuO and an anomalously large magnetic susceptibility
observed for Ir compounds.Comment: 5 pages, 3 figures, to appear in J. Phys. Soc. Jp
Optical conductivity of the Kondo insulator YbB_12: Gap formation and low-energy excitations
Optical reflectivity experiments have been conducted on single crystals of
the Kondo insulator YbB_12 in order to obtain its optical conductivity,
\sigma(\omega). Upon cooling below 70 K, a strong supression of \sigma(\omega)
is seen in the far-infrared region, indicating the opening of an energy gap of
~ 25 meV. This gap development is coincident with a rapid decrease in the
magnetic susceptibility, which shows that the gap opening has significant
influence on magnetic properties. A narrow, asymmetric peak is observed at ~40
meV in \sigma(\omega), which is attributed to optical transitions between the
Yb 4f-derived states across the gap. In addition, a broad peak is observed at
~0.25 eV. This peak is attributed to transitions between Yb 4f-derived states
and p-d band, and is reminiscent of similar peaks previously observed for
rare-earth hexaborides.Comment: 4 pages, 4 figure
Anomalous Metal-Insulator Transition in Filled Skutterudite CeOsSb
Anomalous metal-insulator transition observed in filled skutterudite
CeOsSb is investigated by constructing the effective tight-binding
model with the Coulomb repulsion between f electrons. By using the mean field
approximation, magnetic susceptibilities are calculated and the phase diagram
is obtained. When the band structure has a semimetallic character with small
electron and hole pockets at and H points, a spin density wave
transition with the ordering vector occurs due to the
nesting property of the Fermi surfaces. Magnetic field enhances this phase in
accord with the experiments.Comment: 4 pages, 4 figure
Thermodynamics of doped Kondo insulator in one dimension: Finite Temperature DMRG Study
The finite-temperature density-matrix renormalization-group method is applied
to the one-dimensional Kondo lattice model near half filling to study its
thermodynamics. The spin and charge susceptibilities and entropy are calculated
down to T=0.03t. We find two crossover temperatures near half filling. The
higher crossover temperature continuously connects to the spin gap at half
filling, and the susceptibilities are suppressed around this temperature. At
low temperatures, the susceptibilities increase again with decreasing
temperature when doping is finite. We confirm that they finally approach to the
values obtained in the Tomonaga-Luttinger (TL) liquid ground state for several
parameters. The crossover temperature to the TL liquid is a new energy scale
determined by gapless excitations of the TL liquid. The transition from the
metallic phase to the insulating phase is accompanied by the vanishing of the
lower crossover temperature.Comment: 4 pages, 7 Postscript figures, REVTe
Conductance through Quantum Dots Studied by Finite Temperature DMRG
With the Finite temperature Density Matrix Renormalization Group method
(FT-DMRG), we depeloped a method to calculate thermo-dynamical quantities and
the conductance of a quantum dot system. Conductance is written by the local
density of states on the dot. The density of states is calculated with the
numerical analytic continuation from the thermal Green's function which is
obtained directly from the FT-DMRG. Typical Kondo behaviors in the quantum dot
system are observed conveniently by comparing the conductance with the magnetic
and charge susceptibilities: Coulomb oscillation peaks and the unitarity limit.
We discuss advantage of this method compared with others.Comment: 14 pages, 13 fiure
Finite temperature properties of the 2D Kondo lattice model
Using recently developed Lanczos technique we study finite-temperature
properties of the 2D Kondo lattice model at various fillings of the conduction
band. At half filling the quasiparticle gap governs physical properties of the
chemical potential and the charge susceptibility at small temperatures. In the
intermediate coupling regime quasiparticle gap scales approximately linearly
with Kondo coupling. Temperature dependence of the spin susceptibility reveals
the existence of two different temperature scales. A spin gap in the
intermediate regime leads to exponential drop of the spin susceptibility at low
temperatures. Unusual scaling of spin susceptibility is found for temperatures
above 0.6 J. Charge susceptibility at finite doping reveals existence of heavy
quasiparticles. A new low energy scale is found at finite doping.Comment: REVTeX, 7 pages, 7 figure
Phase Diagram of the Electron-Doped Cuprate Superconductors
We investigate the phase diagram of the electron-doped systems in high-Tc
cuprates. We calculate the superconducting transition temperature Tc, the
antiferromagnetic transition temperature TN, the NMR relaxation rate 1/T1 with
the antiferromagnetic fluctuations in the fluctuation-exchange (FLEX)
approximation and with the superconducting fluctuations in the self-consistent
t-matrix approximation. Obtained phase diagram has common features as those in
the hole-doped systems, including the antiferromagnetic state, the
superconducting state and the spin gap phenomenon. Doping-dependences of TN, Tc
and Tsg (spin gap temperature) are, however, different with those in the
hole-doped systems. These differences are due to the intrinsic nature of the
ingap states which are intimately related with the Zhang-Rice singlets in the
hole-doped systems and are correlated d-electrons in the electron-doped
systems, respectively, which has been shown in the d-p model.Comment: 4 pages, 3 figure
- …
