3,512 research outputs found
Experimental realization of a quantum game on a one-way quantum computer
We report the first demonstration of a quantum game on an all-optical one-way
quantum computer. Following a recent theoretical proposal we implement a
quantum version of Prisoner's Dilemma, where the quantum circuit is realized by
a 4-qubit box-cluster configuration and the player's local strategies by
measurements performed on the physical qubits of the cluster. This
demonstration underlines the strength and versatility of the one-way model and
we expect that this will trigger further interest in designing quantum
protocols and algorithms to be tested in state-of-the-art cluster resources.Comment: 13 pages, 4 figure
Budget Feasible Mechanisms for Experimental Design
In the classical experimental design setting, an experimenter E has access to
a population of potential experiment subjects , each
associated with a vector of features . Conducting an experiment
with subject reveals an unknown value to E. E typically assumes
some hypothetical relationship between 's and 's, e.g., , and estimates from experiments, e.g., through linear
regression. As a proxy for various practical constraints, E may select only a
subset of subjects on which to conduct the experiment.
We initiate the study of budgeted mechanisms for experimental design. In this
setting, E has a budget . Each subject declares an associated cost to be part of the experiment, and must be paid at least her cost. In
particular, the Experimental Design Problem (EDP) is to find a set of
subjects for the experiment that maximizes V(S) = \log\det(I_d+\sum_{i\in
S}x_i\T{x_i}) under the constraint ; our objective
function corresponds to the information gain in parameter that is
learned through linear regression methods, and is related to the so-called
-optimality criterion. Further, the subjects are strategic and may lie about
their costs.
We present a deterministic, polynomial time, budget feasible mechanism
scheme, that is approximately truthful and yields a constant factor
approximation to EDP. In particular, for any small and , we can construct a (12.98, )-approximate mechanism that is
-truthful and runs in polynomial time in both and
. We also establish that no truthful,
budget-feasible algorithms is possible within a factor 2 approximation, and
show how to generalize our approach to a wide class of learning problems,
beyond linear regression
Computing Stable Coalitions: Approximation Algorithms for Reward Sharing
Consider a setting where selfish agents are to be assigned to coalitions or
projects from a fixed set P. Each project k is characterized by a valuation
function; v_k(S) is the value generated by a set S of agents working on project
k. We study the following classic problem in this setting: "how should the
agents divide the value that they collectively create?". One traditional
approach in cooperative game theory is to study core stability with the
implicit assumption that there are infinite copies of one project, and agents
can partition themselves into any number of coalitions. In contrast, we
consider a model with a finite number of non-identical projects; this makes
computing both high-welfare solutions and core payments highly non-trivial.
The main contribution of this paper is a black-box mechanism that reduces the
problem of computing a near-optimal core stable solution to the purely
algorithmic problem of welfare maximization; we apply this to compute an
approximately core stable solution that extracts one-fourth of the optimal
social welfare for the class of subadditive valuations. We also show much
stronger results for several popular sub-classes: anonymous, fractionally
subadditive, and submodular valuations, as well as provide new approximation
algorithms for welfare maximization with anonymous functions. Finally, we
establish a connection between our setting and the well-studied simultaneous
auctions with item bidding; we adapt our results to compute approximate pure
Nash equilibria for these auctions.Comment: Under Revie
Quantum Games
In these lecture notes we investigate the implications of the identification
of strategies with quantum operations in game theory beyond the results
presented in [J. Eisert, M. Wilkens, and M. Lewenstein, Phys. Rev. Lett. 83,
3077 (1999)]. After introducing a general framework, we study quantum games
with a classical analogue in order to flesh out the peculiarities of game
theoretical settings in the quantum domain. Special emphasis is given to a
detailed investigation of different sets of quantum strategies.Comment: 13 pages (LaTeX), 3 figure
The basic approval voting game
We survey results about Approval Voting obtained within the standard framework of game theory. Restricting the set of strategies to undominated and sincere ballots does not help to predict Approval Voting outcomes, which is also the case under strategic equilibrium concepts such as Nash equilibrium and its usual refinements. Strong Nash equilibrium in general does not exist but predicts the election of a Condorcet winner when one exists
Sequential pivotal mechanisms for public project problems
It is well-known that for several natural decision problems no budget
balanced Groves mechanisms exist. This has motivated recent research on
designing variants of feasible Groves mechanisms (termed as `redistribution of
VCG (Vickrey-Clarke-Groves) payments') that generate reduced deficit. With this
in mind, we study sequential mechanisms and consider optimal strategies that
could reduce the deficit resulting under the simultaneous mechanism. We show
that such strategies exist for the sequential pivotal mechanism of the
well-known public project problem. We also exhibit an optimal strategy with the
property that a maximal social welfare is generated when each player follows
it. Finally, we show that these strategies can be achieved by an implementation
in Nash equilibrium.Comment: 19 pages. The version without the appendix will appear in the Proc.
2nd International Symposium on Algorithmic Game Theory, 200
Biology helps you to win a game
We present a game of interacting agents which mimics the complex dynamics
found in many natural and social systems. These agents modify their strategies
periodically, depending on their performances using genetic crossover
mechanisms, inspired by biology. We study the performances of the agents under
different conditions, and how they adapt themselves. In addition the dynamics
of the game is investigated.Comment: 4 pages including 6 figures. Uses REVTeX4. Submitted for Conference
Proceedings of the "Unconventional Applications of Statistical Physics",
Kolkat
Charge Transport in the Dense Two-Dimensional Coulomb Gas
The dynamics of a globally neutral system of diffusing Coulomb charges in two
dimensions, driven by an applied electric field, is studied in a wide
temperature range around the Berezinskii-Kosterlitz-Thouless transition. I
argue that the commonly accepted ``free particle drift'' mechanism of charge
transport in this system is limited to relatively low particle densities. For
higher densities, I propose a modified picture involving collective ``partner
transfer'' between bound pairs. The new picture provides a natural explanation
for recent experimental and numerical findings which deviate from standard
theory. It also clarifies the origin of dynamical scaling in this context.Comment: 4 pages, RevTeX, 2 eps figures included; some typos corrected, final
version to be published in Phys. Rev. Let
Evolution of Cooperation and Coordination in a Dynamically Networked Society
Situations of conflict giving rise to social dilemmas are widespread in
society and game theory is one major way in which they can be investigated.
Starting from the observation that individuals in society interact through
networks of acquaintances, we model the co-evolution of the agents' strategies
and of the social network itself using two prototypical games, the Prisoner's
Dilemma and the Stag Hunt. Allowing agents to dismiss ties and establish new
ones, we find that cooperation and coordination can be achieved through the
self-organization of the social network, a result that is non-trivial,
especially in the Prisoner's Dilemma case. The evolution and stability of
cooperation implies the condensation of agents exploiting particular game
strategies into strong and stable clusters which are more densely connected,
even in the more difficult case of the Prisoner's Dilemma.Comment: 18 pages, 14 figures. to appea
- …
