3,512 research outputs found

    Experimental realization of a quantum game on a one-way quantum computer

    Full text link
    We report the first demonstration of a quantum game on an all-optical one-way quantum computer. Following a recent theoretical proposal we implement a quantum version of Prisoner's Dilemma, where the quantum circuit is realized by a 4-qubit box-cluster configuration and the player's local strategies by measurements performed on the physical qubits of the cluster. This demonstration underlines the strength and versatility of the one-way model and we expect that this will trigger further interest in designing quantum protocols and algorithms to be tested in state-of-the-art cluster resources.Comment: 13 pages, 4 figure

    Budget Feasible Mechanisms for Experimental Design

    Full text link
    In the classical experimental design setting, an experimenter E has access to a population of nn potential experiment subjects i{1,...,n}i\in \{1,...,n\}, each associated with a vector of features xiRdx_i\in R^d. Conducting an experiment with subject ii reveals an unknown value yiRy_i\in R to E. E typically assumes some hypothetical relationship between xix_i's and yiy_i's, e.g., yiβxiy_i \approx \beta x_i, and estimates β\beta from experiments, e.g., through linear regression. As a proxy for various practical constraints, E may select only a subset of subjects on which to conduct the experiment. We initiate the study of budgeted mechanisms for experimental design. In this setting, E has a budget BB. Each subject ii declares an associated cost ci>0c_i >0 to be part of the experiment, and must be paid at least her cost. In particular, the Experimental Design Problem (EDP) is to find a set SS of subjects for the experiment that maximizes V(S) = \log\det(I_d+\sum_{i\in S}x_i\T{x_i}) under the constraint iSciB\sum_{i\in S}c_i\leq B; our objective function corresponds to the information gain in parameter β\beta that is learned through linear regression methods, and is related to the so-called DD-optimality criterion. Further, the subjects are strategic and may lie about their costs. We present a deterministic, polynomial time, budget feasible mechanism scheme, that is approximately truthful and yields a constant factor approximation to EDP. In particular, for any small δ>0\delta > 0 and ϵ>0\epsilon > 0, we can construct a (12.98, ϵ\epsilon)-approximate mechanism that is δ\delta-truthful and runs in polynomial time in both nn and loglogBϵδ\log\log\frac{B}{\epsilon\delta}. We also establish that no truthful, budget-feasible algorithms is possible within a factor 2 approximation, and show how to generalize our approach to a wide class of learning problems, beyond linear regression

    Computing Stable Coalitions: Approximation Algorithms for Reward Sharing

    Full text link
    Consider a setting where selfish agents are to be assigned to coalitions or projects from a fixed set P. Each project k is characterized by a valuation function; v_k(S) is the value generated by a set S of agents working on project k. We study the following classic problem in this setting: "how should the agents divide the value that they collectively create?". One traditional approach in cooperative game theory is to study core stability with the implicit assumption that there are infinite copies of one project, and agents can partition themselves into any number of coalitions. In contrast, we consider a model with a finite number of non-identical projects; this makes computing both high-welfare solutions and core payments highly non-trivial. The main contribution of this paper is a black-box mechanism that reduces the problem of computing a near-optimal core stable solution to the purely algorithmic problem of welfare maximization; we apply this to compute an approximately core stable solution that extracts one-fourth of the optimal social welfare for the class of subadditive valuations. We also show much stronger results for several popular sub-classes: anonymous, fractionally subadditive, and submodular valuations, as well as provide new approximation algorithms for welfare maximization with anonymous functions. Finally, we establish a connection between our setting and the well-studied simultaneous auctions with item bidding; we adapt our results to compute approximate pure Nash equilibria for these auctions.Comment: Under Revie

    Quantum Games

    Full text link
    In these lecture notes we investigate the implications of the identification of strategies with quantum operations in game theory beyond the results presented in [J. Eisert, M. Wilkens, and M. Lewenstein, Phys. Rev. Lett. 83, 3077 (1999)]. After introducing a general framework, we study quantum games with a classical analogue in order to flesh out the peculiarities of game theoretical settings in the quantum domain. Special emphasis is given to a detailed investigation of different sets of quantum strategies.Comment: 13 pages (LaTeX), 3 figure

    The basic approval voting game

    Get PDF
    We survey results about Approval Voting obtained within the standard framework of game theory. Restricting the set of strategies to undominated and sincere ballots does not help to predict Approval Voting outcomes, which is also the case under strategic equilibrium concepts such as Nash equilibrium and its usual refinements. Strong Nash equilibrium in general does not exist but predicts the election of a Condorcet winner when one exists

    Sequential pivotal mechanisms for public project problems

    Get PDF
    It is well-known that for several natural decision problems no budget balanced Groves mechanisms exist. This has motivated recent research on designing variants of feasible Groves mechanisms (termed as `redistribution of VCG (Vickrey-Clarke-Groves) payments') that generate reduced deficit. With this in mind, we study sequential mechanisms and consider optimal strategies that could reduce the deficit resulting under the simultaneous mechanism. We show that such strategies exist for the sequential pivotal mechanism of the well-known public project problem. We also exhibit an optimal strategy with the property that a maximal social welfare is generated when each player follows it. Finally, we show that these strategies can be achieved by an implementation in Nash equilibrium.Comment: 19 pages. The version without the appendix will appear in the Proc. 2nd International Symposium on Algorithmic Game Theory, 200

    Biology helps you to win a game

    Full text link
    We present a game of interacting agents which mimics the complex dynamics found in many natural and social systems. These agents modify their strategies periodically, depending on their performances using genetic crossover mechanisms, inspired by biology. We study the performances of the agents under different conditions, and how they adapt themselves. In addition the dynamics of the game is investigated.Comment: 4 pages including 6 figures. Uses REVTeX4. Submitted for Conference Proceedings of the "Unconventional Applications of Statistical Physics", Kolkat

    Charge Transport in the Dense Two-Dimensional Coulomb Gas

    Full text link
    The dynamics of a globally neutral system of diffusing Coulomb charges in two dimensions, driven by an applied electric field, is studied in a wide temperature range around the Berezinskii-Kosterlitz-Thouless transition. I argue that the commonly accepted ``free particle drift'' mechanism of charge transport in this system is limited to relatively low particle densities. For higher densities, I propose a modified picture involving collective ``partner transfer'' between bound pairs. The new picture provides a natural explanation for recent experimental and numerical findings which deviate from standard theory. It also clarifies the origin of dynamical scaling in this context.Comment: 4 pages, RevTeX, 2 eps figures included; some typos corrected, final version to be published in Phys. Rev. Let

    Evolution of Cooperation and Coordination in a Dynamically Networked Society

    Get PDF
    Situations of conflict giving rise to social dilemmas are widespread in society and game theory is one major way in which they can be investigated. Starting from the observation that individuals in society interact through networks of acquaintances, we model the co-evolution of the agents' strategies and of the social network itself using two prototypical games, the Prisoner's Dilemma and the Stag Hunt. Allowing agents to dismiss ties and establish new ones, we find that cooperation and coordination can be achieved through the self-organization of the social network, a result that is non-trivial, especially in the Prisoner's Dilemma case. The evolution and stability of cooperation implies the condensation of agents exploiting particular game strategies into strong and stable clusters which are more densely connected, even in the more difficult case of the Prisoner's Dilemma.Comment: 18 pages, 14 figures. to appea
    corecore