10 research outputs found
Similarities and Differences of the Soleus and Gastrocnemius H-reflexes during Varied Body Postures, Foot Positions, and Muscle Function: Multifactor Designs for Repeated Measures
<p>Abstract</p> <p>Background</p> <p>Although the soleus (Sol), medial gastrocnemius (MG), and lateral gastrocnemius (LG) muscles differ in function, composition, and innervations, it is a common practice is to investigate them as single H-reflex recording. The purpose of this study was to compare H-reflex recordings between these three sections of the triceps surae muscle group of healthy participants while lying and standing during three different ankle positions.</p> <p>Methods</p> <p>The Sol, MG and LG muscles' H-reflexes were recorded from ten participants during prone lying and standing with the ankle in neutral, maximum dorsiflexion, and maximum plantarflexion positions. Four traces were averaged for each combination of conditions. Three-way ANOVAs (posture X ankle position X muscle) with planned comparisons were used for statistical comparisons.</p> <p>Results</p> <p>Although the H-reflex in the three muscle sections differed in latency and amplitude, its dependency on posture and ankle position was similar. The H-reflex amplitudes and maximum H-reflex to M-response (H/M) ratios were significantly 1) lower during standing compared to lying with the ankle in neutral, 2) greater during standing with the ankle in plantarflexion compared to neutral, and 3) less with the ankle in dorsiflexion compared to neutral during lying and standing for all muscles (<it>p </it>≤ .05).</p> <p>Conclusion</p> <p>Varying demands are required for muscles activated during distinctly different postures and ankle movement tasks.</p
Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude
<p>Abstract</p> <p>Background</p> <p>To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by ~35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H-) reflex responses during powered versus unpowered walking.</p> <p>Methods</p> <p>We tested soleus H-reflex responses in neurologically intact subjects (n=8) that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered), then with power (powered), and finally without power again (second unpowered). We also collected joint kinematics and electromyography.</p> <p>Results</p> <p>When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG) activation (27-48%) and had concomitant reductions in H-reflex amplitude (12-24%) compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions.</p> <p>Conclusion</p> <p>These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance. Future studies should determine if the findings also apply to long-term adaption to the exoskeleton.</p
Repeatability of Corticospinal and Spinal Measures during Lengthening and Shortening Contractions in the Human Tibialis Anterior Muscle
Elements of the human central nervous system (CNS) constantly oscillate. In addition, there are also methodological factors and changes in muscle mechanics during dynamic muscle contractions that threaten the stability and consistency of transcranial magnetic stimulation (TMS) and perpherial nerve stimulation (PNS) measures
Aging effects on joint proprioception: the role of physical activity in proprioception preservation
Temperature dependence of soleus H-reflex and M wave in young and older women
The purpose of this study was to investigate the effect of altered local temperature on soleus H-reflex and compound muscle action potential (M wave) in young and older women. H-reflex and M wave responses were elicited in 10 young (22.3±3.3 years) and 10 older (72.5±3.2 years) women at three muscle temperatures: control (34.2±0.3°C), cold (31.3±0.5°C) and warm (37.1±0.2°C). H-reflex output, expressed as the ratio between maximal H-reflex and maximal M wave (Hmax/Mmax), was lower in the older, compared with the younger, group, regardless of temperature. In control temperature conditions, for example, the Hmax/Mmax ratio was 36.8±24% in the young and 25.4±20% in the older (P<0.05). Warming had no effect on the H-reflex output in either group, whilst cooling increased H-reflex output only in the younger group (+28%). In both groups, cooling increased (+5.3%), and warming decreased (-5.5%) the H-reflex latency. This study confirms that older individuals experience a reduced ability to modulate the reflex output in response to a perturbation. In a cold environment, for example, the lack of facilitation in the reflex output, along with a delayed reflex response could be critical to an older individual in responding to postural perturbations thus potentially compromising both static and dynamic balance
Feasibility of the Assessment of the H-Reflex in Adult Dancers and Non-dancers with and without Down Syndrome: a Pilot Study
The analysis of monosynaptic Hoffman’s reflex (H-reflex) involves recording the
response to electrical stimulation of Ia-afferent fibers from the muscle spindle. The
H-reflex can be used as a probe to study spinal neuronal pathways and mechanisms
at rest and during movement in humans. The purpose of this study was to analyze
the feasibility of the assessment of the H-reflex in people with Down syndrome
(DS), and to compare it between adult dancers and non-dancers with and without
DS. Twenty-five participants were included and divided into four groups (6 nondancers
and 6 dancers with DS and, 7 non-dancers and 6 dancers without DS). The
H-reflex was recorded at the level of the soleus muscle in its central area. We
analyzed the H response in three different conditions: decubitus prone, static
standing position with open eyes and closed eyes. Non-dancers with DS showed
a faster H-reflex latency than both groups without DS (all p < .005). In the present
study, we provide evidence of the feasibility of eliciting the H-reflex in adults with
DS. Interestingly, the H-reflex was present in decubitus position but not in standing
position in most non-dancers with DS and dancers without DS. The data from this
study can help to perform future research in adults with DS and the development of
full-scale studies to analyze this variable in adults with intellectual disability with
and without DS.info:eu-repo/semantics/acceptedVersio
