225 research outputs found
Impact of perinatal asphyxia on parental mental health and bonding with the infant: a questionnaire survey of Swiss parents
Objective
To compare current mental health symptoms and infant bonding in parents whose infants survived perinatal asphyxia in the last 2 years with control parents and to investigate which sociodemographic, obstetric and neonatal variables correlated with parental mental health and infant bonding in the asphyxia group.
Design
Cross-sectional questionnaire survey of parents whose children were registered in the Swiss national Asphyxia and Cooling register and of control parents (Post-traumatic Diagnostic Scale, Hospital Anxiety and Depression Scale, Mother-to-Infant Bonding Scale).
Results
The response rate for the asphyxia group was 46.5%. Compared with controls, mothers and fathers in the asphyxia group had a higher frequency of post-traumatic stress disorder (PTSD) symptoms (p<0.001). More mothers (n=28, 56%) had a symptom diagnosis of either full or partial PTSD than controls (n=54, 39%) (p=0.032). Similarly, more fathers (n=31, 51%) had a symptom diagnosis of either partial or full PTSD than controls (n=19, 33%) (p=0.034). Mothers reported poorer bonding with the infant (p=0.043) than controls. Having a trauma in the past was linked to more psychological distress in mothers (r=0.31 (95% CI 0.04 to 0.54)) and fathers (r=0.35 (95% CI 0.05 to 0.59)). For mothers, previous pregnancy was linked to poorer bonding (r=0.41 (95% CI 0.13 to 0.63)). In fathers, therapeutic hypothermia of the infant was related to less frequent PTSD symptoms (r=−0.37 (95% CI −0.61 to −0.06)) and past psychological difficulties (r=0.37 (95% CI 0.07 to 0.60)) to more psychological distress. A lower Apgar score was linked to poorer bonding (r=−0.38 (95% CI −0.64 to −0.05)).
Conclusions
Parents of infants hospitalised for perinatal asphyxia are more at risk of developing PTSD than control parents
Recommended from our members
Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism
The positive effects of dietary fibre on health are now widely recognised; however, our understanding of the mechanisms involved in producing such benefits remains unclear. There are even uncertainties about how dietary fibre in plant foods should be defined and analysed. This review attempts to clarify the confusion regarding the mechanisms of action of dietary fibre and deals with current knowledge on the wide variety of dietary fibre materials, comprising mainly of NSP that are not digested by enzymes of the gastrointestinal (GI) tract. These non-digestible materials range from intact cell walls of plant tissues to individual polysaccharide solutions often used in mechanistic studies. We discuss how the structure and properties of fibre are affected during food processing and how this can impact on nutrient digestibility. Dietary fibre can have multiple effects on GI function, including GI transit time and increased digesta viscosity, thereby affecting flow and mixing behaviour. Moreover, cell wall encapsulation influences macronutrient digestibility through limited access to digestive enzymes and/or substrate and product release. Moreover, encapsulation of starch can limit the extent of gelatinisation during hydrothermal processing of plant foods. Emphasis is placed on the effects of diverse forms of fibre on rates and extents of starch and lipid digestion, and how it is important that a better understanding of such interactions with respect to the physiology and biochemistry of digestion is needed. In conclusion, we point to areas of further investigation that are expected to contribute to realisation of the full potential of dietary fibre on health and well-being of humans
Genetic loci associated with plasma phospholipid N-3 fatty acids: A Meta-Analysis of Genome-Wide association studies from the charge consortium
Long-chain n-3 polyunsaturated fatty acids (PUFAs) can derive from diet or from α-linolenic acid (ALA) by elongation and desaturation. We investigated the association of common genetic variation with plasma phospholipid levels of the four major n-3 PUFAs by performing genome-wide association studies in five population-based cohorts comprising 8,866 subjects of European ancestry. Minor alleles of SNPs in FADS1 and FADS2 (desaturases) were associated with higher levels of ALA (p = 3×10-64) and lower levels of eicosapentaenoic acid (EPA, p = 5×10-58) and docosapentaenoic acid (DPA, p = 4×10-154). Minor alleles of SNPs in ELOVL2 (elongase) were associated with higher EPA (p = 2×10-12) and DPA (p = 1×10-43) and lower docosahexaenoic acid (DHA, p = 1×10-15). In addition to genes in the n-3 pathway, we identified a novel association of DPA with several SNPs in GCKR (glucokinase regulator, p = 1×10-8). We observed a weaker association between ALA and EPA among carriers of the minor allele of a representative SNP in FADS2 (rs1535), suggesting a lower rate of ALA-to-EPA conversion in these subjects. In samples of African, Chinese, and Hispanic ancestry, associations of n-3 PUFAs were similar with a representative SNP in FADS1 but less consistent with a representative SNP in ELOVL2. Our findings show that common variation in n-3 metabolic pathway genes and in GCKR influences plasma phospholipid levels of n-3 PUFAs in populations of European ancestry and, for FADS1, in other ancestries
Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms
Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains ∼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. Video Abstract [Figure presented] Keywords: type 2 diabetes (T2D); genetics; disease mechanism; SLC16A11; MCT11; solute carrier (SLC); monocarboxylates; fatty acid metabolism; lipid metabolism; precision medicin
Identification of a BRCA2-Specific modifier locus at 6p24 related to breast cancer risk
Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those known to date have all been found through population-based genome-wide association studies (GWAS). To comprehensively identify breast cancer risk modifying loci for BRCA2 mutation carriers, we conducted a deep replication of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a total of 211,155 SNPs as part of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330 unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2 were genotyped and available for analysis. We replicated previously reported breast cancer susceptibility alleles in these BRCA2 mutation carriers and for several regions (including FGFR2, MAP3K1, CDKN2A/B, and PTHLH) identified SNPs that have stronger evidence of association than those previously published. We also identified a novel susceptibility allele at 6p24 that was inversely associated with risk in BRCA2 mutation carriers (rs9348512; per allele HR = 0.85, 95% CI 0.80-0.90, P = 3.9×10−8). This SNP was not associated with breast cancer risk either in the general population or in BRCA1 mutation carriers. The locus lies within a region containing TFAP2A, which encodes a transcriptional activation protein that interacts with several tumor suppressor genes. This report identifies the first breast cancer risk locus specific to a BRCA2 mutation background. This comprehensive update of novel and previously reported breast cancer susceptibility loci contributes to the establishment of a panel of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical utility for women with BRCA2 mutations weighing options for medical prevention of breast cancer
Associations of plasma clusterin and Alzheimer’s disease-related MRI markers in adults at mid-life: The CARDIA Brain MRI sub-study
BackgroundClinical and epidemiological studies of older persons have implicated clusterin in Alzheimer's disease (AD) pathogenesis. In the context of identifying early biomarkers of risk, we examined associations of plasma clusterin and characteristics of AD in middle-aged individuals from the community.Materials and methodsSubjects were 639 cognitively normal individuals (mean age 50 ± 3.5) from the Coronary Artery Risk Development in Young Adults (CARDIA) Brain MRI sub-study. Clusterin was quantified using ELISA (mean 255± 31 ng/ml). Associations were assessed between clusterin and volumes of brain regions known to atrophy in early AD, including entorhinal cortex (ECV), hippocampus (HV), and medial temporal lobe (MTLV) volumes (cm3). Total brain volume (TBV) and volumes of structures affected in later AD were examined for comparison.ResultsIn multivariable models, higher clusterin had a negative non-linear association with ECV (combined left and right hemispheres), and this association was influenced by the highest clusterin levels. Compared to mean clusterin, 1 and 2 standard deviation (SD) level increases in clusterin were associated with -2.1% (95% CI: -3.3,-0.9) and -7.3% (95% CI: -11.3,-3.3) lower ECV, respectively. Similar relationships were observed between clusterin and HV, although the relationship was stronger for left-side HV than the right-side. However, the association was not significant after adjusting for covariates. Negative non-linear associations between clusterin and MTLV were strongest for the left side: compared to mean clusterin, 1 and 2 SD level increases in clusterin were associated with -0.9% (95% CI: -1.9, 0.1) and -3.7% (95% CI: -7.1, -0.3) lower MTLV. There were no significant associations between clusterin and brain structures affected in later AD.ConclusionsIn middle-aged adults unselected for AD, plasma clusterin was associated with lower volume of the entorhinal cortex, an area that atrophies early in AD. Clusterin could be informative as part of a multi-component preclinical marker for AD
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk
BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat
Risk of Intracranial Complications in Minor Head Injury:The Role of Loss of Consciousness and Post-Traumatic Amnesia in a Multi-Center Observational Study
Various guidelines for minor head injury focus on patients with a Glasgow Coma Scale (GCS) score of 13-15 and loss of consciousness (LOC) or post-traumatic amnesia (PTA), while clinical management for patients without LOC or PTA is often unclear. We aimed to investigate the effect of presence and absence of LOC or PTA on intracranial complications in minor head injury. A prospective multi-center cohort study of all patients with blunt head injury and GCS score of 15 was conducted at six Dutch centers between 2015 and 2017. Five centers used the national guideline and one center used a local guideline-both based on the CT in Head Injury Patients (CHIP) prediction model-to identify patients in need of a computed tomography (CT) scan. We studied the presence of traumatic findings and neurosurgical interventions in patients with and without LOC or PTA. In addition, we assessed the association of LOC and PTA with traumatic findings with logistic regression analysis and the additional predictive value of LOC and PTA compared with other risk factors in the CHIP model. Of 3914 patients, 2249 (58%) experienced neither LOC nor PTA and in 305 (8%) LOC and PTA was unknown. Traumatic findings were present in 153 of 1360 patients (11%) with LOC or PTA and in 67 of 2249 patients (3%) without LOC and PTA. Five patients without LOC and PTA had potential neurosurgical lesions and one patient underwent a neurosurgical intervention. LOC and PTA were strongly associated with traumatic findings on CT, with adjusted odds ratios of 2.9 (95% confidence interval [CI] 2.2-3.8) and 3.5 (95% CI 2.7-4.6), respectively. To conclude, patients who had minor head injury with neither LOC nor PTA are at risk of intracranial complications. Clinical guidelines should include clinical management for patients without LOC and PTA, and they should include LOC and PTA as separate risk factors rather than as diagnostic selection criteria
- …
