1,732 research outputs found
Entrainment of randomly coupled oscillator networks by a pacemaker
Entrainment by a pacemaker, representing an element with a higher frequency,
is numerically investigated for several classes of random networks which
consist of identical phase oscillators. We find that the entrainment frequency
window of a network decreases exponentially with its depth, defined as the mean
forward distance of the elements from the pacemaker. Effectively, only shallow
networks can thus exhibit frequency-locking to the pacemaker. The exponential
dependence is also derived analytically as an approximation for large random
asymmetric networks.Comment: 4 pages, 3 figures, revtex 4, submitted to Phys. Rev. Let
Statistical modeling of ground motion relations for seismic hazard analysis
We introduce a new approach for ground motion relations (GMR) in the
probabilistic seismic hazard analysis (PSHA), being influenced by the extreme
value theory of mathematical statistics. Therein, we understand a GMR as a
random function. We derive mathematically the principle of area-equivalence;
wherein two alternative GMRs have an equivalent influence on the hazard if
these GMRs have equivalent area functions. This includes local biases. An
interpretation of the difference between these GMRs (an actual and a modeled
one) as a random component leads to a general overestimation of residual
variance and hazard. Beside this, we discuss important aspects of classical
approaches and discover discrepancies with the state of the art of stochastics
and statistics (model selection and significance, test of distribution
assumptions, extreme value statistics). We criticize especially the assumption
of logarithmic normally distributed residuals of maxima like the peak ground
acceleration (PGA). The natural distribution of its individual random component
(equivalent to exp(epsilon_0) of Joyner and Boore 1993) is the generalized
extreme value. We show by numerical researches that the actual distribution can
be hidden and a wrong distribution assumption can influence the PSHA negatively
as the negligence of area equivalence does. Finally, we suggest an estimation
concept for GMRs of PSHA with a regression-free variance estimation of the
individual random component. We demonstrate the advantages of event-specific
GMRs by analyzing data sets from the PEER strong motion database and estimate
event-specific GMRs. Therein, the majority of the best models base on an
anisotropic point source approach. The residual variance of logarithmized PGA
is significantly smaller than in previous models. We validate the estimations
for the event with the largest sample by empirical area functions. etc
The effectiveness of public health interventions to reduce the health impact of climate change:a systematic review of systematic reviews
Climate change is likely to be one of the most important threats to public health in the coming years. Yet despite the large number of papers considering the health impact of climate change, few have considered what public health interventions may be of most value in reducing the disease burden. We aimed to evaluate the effectiveness of public health interventions to reduce the disease burden of high priority climate sensitive diseases
Atomistic modelling of large-scale metal film growth fronts
We present simulations of metallization morphologies under ionized sputter
deposition conditions, obtained by a new theoretical approach. By means of
molecular dynamics simulations using a carefully designed interaction
potential, we analyze the surface adsorption, reflection, and etching reactions
taking place during Al physical vapor deposition, and calculate their relative
probability. These probabilities are then employed in a feature-scale
cellular-automaton simulator, which produces calculated film morphologies in
excellent agreement with scanning-electron-microscopy data on ionized sputter
deposition.Comment: RevTeX 4 pages, 2 figure
- …
