1,757 research outputs found

    Teaching the Right Letter Pronunciation in Reciting the Holy Quran Using Intelligent Tutoring System

    Get PDF
    An Intelligent Tutoring System (ITS) is a computer system that offers an instant, adapted instruction and customized feedback to students without human teacher interference. Reciting "Tajweed" the Holy Quran in the appropriate way is very important for all Muslims and is obligatory in Islamic devotions such as prayers. In this paper, the researchers introduce an intelligent tutoring system for teaching Reciting "Tajweed". Our "Tajweed" tutoring system is limited to "Tafkhim and Tarqiq in TAJWEED" the Holy Quran, Rewaya: Hafs from ‘Aasem. The system was evaluated by reciting teachers and students, and the results were auspicious

    Proposed Expert System for Calculating Inheritance in Islam

    Get PDF
    The truth of every human being is the end his life with death, and this leads to leaving assets and funds for those after him and can lead to hate between the heirs, it has made a point of Islamic law on all aspects of life, including the subject of the inheritance of the deceased. The main problem is how to get the knowledge of the basics of inheritance. This paper reviews work done in the use of expert system software to calculate inheritance in Islam. A proposed expert system was designed and developed using CLIPS language to calculate the inheritance in Islam

    Isoskeletal Schiff base polynuclear coordination clusters: synthetic and theoretical aspects

    Get PDF
    This work addresses and enlightens synthetic aspects derived from our effort to systematically construct isoskeletal tetranuclear coordination clusters (CCs) of the general formula [TR2Ln2(LX)4(NO3)2(solv)2] possessing a specific defected dicubane topology, utilizing various substituted Schiff base organic ligands (H2LX) and NiII/CoII and Dy(OTf)3 salts. Our synthetic work is further supported by DFT studies

    USM3D Simulations for Second Sonic Boom Workshop

    Get PDF
    The NASA Tetrahedral Unstructured Software System with the USM3D flow solver was used to compute test cases for the Second AIAA Sonic Boom Prediction Workshop. The intent of this report is to document the USM3D results for SBPW2 test cases. The test cases included an axisymmetric equivalent area body, a JAXA wing body, a NASA low boom supersonic configuration modeled with flow through nacelles and engine boundary conditions. All simulations were conducted for a free stream Mach number of 1.6, zero degrees angle of attack, and a Reynolds number of 5.7 million per meter. Simulations were conducted on tetrahedral grids provided by the workshop committee, as well as a family of grids generated by an in-house approach for sonic boom analyses known as BoomGrid using current best practices. The near-field pressure signatures were extracted and propagated to the ground with the atmospheric propagation code, sBOOM. The USM3D near-field pressure signatures, corresponding sBOOM ground signatures, and loudness levels on the ground are compared with mean values from other workshop participants

    Redox-active ferrocene-modified Cowpea mosaic virus nanoparticles

    Get PDF
    A naturally occurring nanoparticle, the plant virus Cowpea mosaic virus, can be decorated with ferrocene derivatives, of various linker lengths with amine and carboxylategroups, on the external surface using a range of conjugation strategies. The multiple, organometallic, redox-active ferrocene moieties on the outer surface of the virus are electrochemically independent with reduction potentials that span a potential window of 0.16 V that are dependent on the site of modification and the nature of the ferrocene derivative. The number of ferrocenes coupled to each virus ranges from about 100 to 240 depending upon the conjugation site and the linker length and these redox active units can provide multielectron reservoirs

    USM3D Predictions of Supersonic Nozzle Flow

    Get PDF
    This study focused on the NASA Tetrahedral Unstructured Software System CFD code (USM3D) capability to predict supersonic plume flow. Previous studies, published in 2004 and 2009, investigated USM3D's results versus historical experimental data. This current study continued that comparison however focusing on the use of the volume souring to capture the shear layers and internal shock structure of the plume. This study was conducted using two benchmark axisymmetric supersonic jet experimental data sets. The study showed that with the use of volume sourcing, USM3D was able to capture and model a jet plume's shear layer and internal shock structure

    Specialized CFD Grid Generation Methods for Near-Field Sonic Boom Prediction

    Get PDF
    Ongoing interest in analysis and design of low sonic boom supersonic transports re- quires accurate and ecient Computational Fluid Dynamics (CFD) tools. Specialized grid generation techniques are employed to predict near- eld acoustic signatures of these con- gurations. A fundamental examination of grid properties is performed including grid alignment with ow characteristics and element type. The issues a ecting the robustness of cylindrical surface extrusion are illustrated. This study will compare three methods in the extrusion family of grid generation methods that produce grids aligned with the freestream Mach angle. These methods are applied to con gurations from the First AIAA Sonic Boom Prediction Workshop

    Computational and Experimental Study of Supersonic Nozzle Flow and Aft-Deck Interactions

    Get PDF
    NASA has been conducting research into reducing sonic boom and changing FAA regulations to allow for supersonic commercial transport over land in the United States. This particular study looks at a plume passing through a shock generated from an aft deck on a nacelle; the aft deck is meant to represent the trailing edge of a wing. NASA Langley Research Center USM3D CFD code results are compared to the experimental data taken at the NASA Glenn Research Center 1-foot by 1-foot Supersonic Wind Tunnel. This study included examining two turbulence models along with different volume sourcing methods for grid generation. The results show that using the k-epsilon turbulence model within USM3D produced shock signatures that closely follow the experimental data at a variety of nozzle pressure ratio settings

    Copper(II)-benzotriazole coordination compounds in click chemistry: a diagnostic reactivity study

    Get PDF
    This diagnostic study aims to shed light on the catalytic activity of a library of Cu(II) based coordination compounds with benzotriazole-based ligands. We report herein the synthesis and characterization of five new coordination compounds formulated [CuII(L4)(MeCN)2(CF3SO3)2] (1), [CuII(L5)2(CF3SO3)2] (2), [CuII(L6)2(MeCN)(CF3SO3)]·(CF3SO3) (3), [CuII(L6)2(H2O)(CF3SO3)]·(CF3SO3)·2(Me2CO) (4), [CuI4(L1)2(L1’)2(CF3SO3)2]2·4(CF3SO3)·8(Me2CO) (5), derived from similar nitrogen-based ligands. The homogeneous catalytic activity of these compounds along with our previously reported coordination compounds (6 -13), derived from similar ligands, is tested against the well-known Cu(I)-catalysed azide-alkyne cycloaddition reaction. The optimal catalyst [CuII(L1)2(CF3SO3)2] (10) activates the reaction to afford 1,4-disubstituted 1,2,3-triazoles with yields up to 98% and without requiring a reducing agent. Various control experiments are performed to optimize the method as well as examine parameters such as ligand variation, metal coordination geometry and environment, in order to elucidate the behaviour of the catalytic system

    Preliminary Computational Study for Future Tests in the NASA Ames 9 foot' x 7 foot Wind Tunnel

    Get PDF
    The NASA Advanced Air Vehicles Program, Commercial Supersonics Technology Project seeks to advance tools and techniques to make over-land supersonic flight feasible. In this study, preliminary computational results are presented for future tests in the NASA Ames 9 foot x 7 foot supersonic wind tunnel to be conducted in early 2016. Shock-plume interactions and their effect on pressure signature are examined for six model geometries. Near- field pressure signatures are assessed using the CFD code USM3D to model the proposed test geometries in free-air. Additionally, results obtained using the commercial grid generation software Pointwise Reigistered Trademark are compared to results using VGRID, the NASA Langley Research Center in-house mesh generation program
    corecore