52 research outputs found
Moringa oleifera Lam. (family Moringaceae) leaf extract attenuates high-fat diet-induced dyslipidemia and vascular endothelium dysfunction in Wistar albino rats
Purpose: To investigate the protective effect of methanol extract of Moringa oleifera leaves (MEMO) in high-fat diet (HFD)-induced dyslipidemia and vascular endothelium dysfunction.
Methods: Dose-dependent attenuating effect of MEMO was tested at doses of 200 and 400 mg/kg/day in an in vivo model of HFD-induced dyslipidemia using rats whereas vascular endothelial reactivity was assessed in isolated rat aorta using ex vivo organ bath setup.
Results: MEMO administration in HFD-induced dyslipidemic rats for 3 consecutive weeks, resulted in significant decrease in rat body weight, LW/BW and RFPW/BW ratio when compared to rats treated with HFD only where an increase in body weight was observed. Decrease in the average daily feed intake and significant reductions in waist, Lee index and BMI was also observed after MEMO treatment in HFD-induced dyslipidemic rats. Lipid profile data indicate that HFD group showed significant increase in total cholesterol, triglyceride, LDL and VLDL levels while HDL levels decreased significantly. On the other hand, MEMO treatment improved lipid profile compared to HFD group. Ex-vivo isolated aorta results revealed that MEMO treatment reversed HFD-induced endothelium dysfunction when compared to SD group.
Conclusion: MEMO treatment produces dose-dependent improvement in lipid profile and vascular endothelium protection, thereby rationalizing its traditional medicine use in the treatment of dyslipidemia and cardiovascular related endothelial disorders
From proteome to candidate vaccines: target discovery and molecular dynamics-guided multi-epitope vaccine engineering against kissing bug
IntroductionTrypanosoma cruzi is a protozoan parasite that causes the tropical ailment known as Chagas disease, which has its origins in South America. Globally, it has a major impact on health and is transported by insect vector that serves as a parasite. Given the scarcity of vaccines and the limited treatment choices, we conducted a comprehensive investigation of core proteomics to explore a potential reverse vaccine candidate with high antigenicity. MethodsTo identify the immunodominant epitopes, T. cruzi core proteomics was initially explored. Consequently, the vaccine sequence was engineered to possess characteristics of non-allergenicity, antigenicity, immunogenicity, and enhanced solubility. After modeling the tertiary structure of the human TLR4 receptor, the binding affinities were assessed employing molecular docking and molecular dynamics simulations (MDS).ResultsDocking of the final vaccine design with TLR4 receptors revealed substantial hydrogen bond interactions. A server-based methodology for immunological simulation was developed to forecast the effectiveness against antibodies (IgM + IgG) and interferons (IFN-g). The MDS analysis revealed notable levels of structural compactness and binding stability with average RMSD of 5.03 Aring;, beta-factor 1.09e+5 Å, Rg is 44.7 Aring; and RMSF of 49.50 Aring;. This is followed by binding free energies calculation. The system stability was compromised by the complexes, as evidenced by their corresponding Gibbs free energies of -54.6 kcal/mol.DiscussionSubtractive proteomics approach was applied to determine the antigenic regions of the T cruzi. Our study utilized computational techniques to identify B- and T-cell epitopes in the T. cruzi core proteome. In current study the developed vaccine candidate exhibits immunodominant features. Our findings suggest that formulating a vaccine targeting the causative agent of Chagas disease should be the initial step in its development
Mapping artificial intelligence adoption in hepatology practice and research: challenges and opportunities in MENA region
BackgroundArtificial intelligence (AI) is increasingly relevant to hepatology, yet real-world adoption in the Middle East and North Africa (MENA) is uncertain. We assessed awareness, use, perceived value, barriers, and policy priorities among hepatology clinicians in the region.MethodsA cross-sectional online survey targeted hepatologists and gastroenterologists across 17 MENA countries. The survey assessed clinical and research applications of AI, perceived benefits, clinical and research use, barriers, ethical considerations, and institutional readiness. Descriptive statistics and thematic analysis were performed.ResultsOf 285 invited professionals, 236 completed the survey (response rate: 82.8%). While 73.2% recognized the transformative potential of AI, only 14.4% used AI tools daily, primarily for imaging analysis and disease prediction. AI tools were used in research by 39.8% of respondents, mainly for data analysis, manuscript writing assistance, and predictive modeling. Major barriers included inadequate training (60.6%), limited AI tool access (53%), and insufficient infrastructure (53%). Ethical concerns focused on data privacy, diagnostic accuracy, and over-reliance on automation. Despite these challenges, 70.3% expressed strong interest in AI training., and 43.6% anticipating routine clinical integration within 1–3 years.ConclusionMENA hepatologists are optimistic about AI but report limited routine use and substantial readiness gaps. Priorities include scalable training, interoperable infrastructure and standards, clear governance with human-in-the-loop safeguards, and region-specific validation to enable safe, equitable implementation
First report of carbapenem-resistant Providencia stuartii in Saudi Arabia
We present the case of 31-year-old man who developed hospital-acquired pneumonia in the intensive care unit. Pathogens were identified to be carbapenem-resistant isolates of Providencia stuartii and Klebsiella pneumoniae. The patient was treated with an extended infusion of double-dose meropenem (targeting the carbapenem-resistant P. stuartii) and colistin (targeting the carbapenem-resistant K. pneumoniae) for 2 weeks. The patient's disease responded well to the prescribed regimen; his chest X-ray became normal, and all other signs of infection subsided. To our knowledge, this is the first description of the emergence of carbapenem-resistant P. stuartii due to AmpC hyperproduction in Saudi Arabia. Keywords: Carbapenem resistant, extended infusion, meropenem, Providencia stuarti
Nanopore Compositional Modeling in Unconventional Shale Reservoirs
Summary
Understanding the mechanism of multicomponent mass transport in the nanopores of unconventional reservoirs, such as Eagle Ford, Niobrara, Woodford, and Bakken, is of great interest because it influences long-term economic development of such reservoirs. Thus, we began to examine the phase behavior and flow characteristics of multicomponent flow in primary production in nanoporous reservoirs. Besides primary recovery, our long-term objectives included enhanced oil production from such reservoirs. The first step was to evaluate the phase behavior in nanopores on the basis of pore-size distribution. This was motivated because the physical properties of hydrocarbon components are affected by wall proximity in nanopores as a result of van der Waals molecular interactions with the pore walls. For instance, critical pressure and temperature of hydrocarbon components shift to lower values as the nanopore walls become closer. In our research, we applied this kind of critical property shift to the hydrocarbon components of two Eagle Ford fluid samples. Then, we used the shifted phase characteristics in dual-porosity compositional modeling to determine the pore-to-pore flow characteristics, and, eventually, the flow behavior of hydrocarbons to the wells. In the simulation, we assigned three levels of phase behavior in the matrix and fracture pore spaces. In addition, the flow hierarchy included flow from matrix (nano-, meso-, and macropores) to macrofractures, from macrofractures to a hydraulic fracture (HF), and through the HF to the production well.
From the simulation study, we determined why hydrocarbon fluids flow so effectively in ultralow-permeability shale reservoirs. The simulation also gave credence to the intuitive notion that favorable phase behavior (phase split) in the nanopores is one of the major reasons for production of commercial quantities of light oil and gas from shale reservoirs. It was determined that the implementation of confined-pore and midconfined-pore phase behavior lowers the bubblepoint pressure, and this, in turn, leads to a slightly higher oil recovery and lesser gas recovery. Also it was determined that the implementation of midconfined-pore and confined-pore phase-behavior shift reduces the retrograde liquid-condensation region, which in turn, leads to lower liquid yield while maintaining the same gas-production quantity. Finally, the important reason that we are able to produce shale reservoirs economically is “rubblizing” the reservoir matrix near HFs, which creates favorable permeability pathways to improve reservoir drainage. This is why multistage hydraulic fracturing is so critical for successful development of shale reservoirs.</jats:p
Rutin Gel with Bone Graft Accelerates Bone Formation in a Rabbit Model by Inhibiting MMPs and Enhancing Collagen Activities
Bone graft techniques are used to compensate for bone loss in areas with deficient regeneration. However, matrix metalloproteases (MMPs) can limit bone formation by degrading extracellular matrices, which are required for bone regrowth. Noteworthily, rutin is a natural flavonoid compound that inhibits the genetic expression of various MMPs. Therefore, rutin may serve as an inexpensive and stable alternative to the growth factors used to accelerate dental bone graft healing. This study aimed to evaluate the potential of mixing rutin gel with allograft bone to accelerate the healing of bone defects in an in vivo rabbit model. Bone defects were surgically induced in New Zealand rabbits (n = 3 per group) and subsequently treated with bone grafts along with rutin or control gel. Overall, treatment with rutin significantly prevented the expression of several MMPs and increased type III collagen in the gingiva around the surgical site. Additionally, rutin-treated animals showed enhanced bone formation with higher bone marrow content in the jawbone defect area compared with the control group. Taken together, these findings demonstrate that rutin gel, when added to bone grafts, quickly enhances bone formation and may serve as a suitable alternative to expensive growth factors for the same purpose
Cymbopogon Proximus Essential Oil Protects Rats against Isoproterenol-Induced Cardiac Hypertrophy and Fibrosis
Cardiac hypertrophy is an independent risk factor of many cardiovascular diseases. Several cardiovascular protective properties of Cymbopogon proximus have been reported. However, no reports investigating the direct effect of C. proximus essential oil on the heart are available. The goal of this study was to explore the cardioprotective effect of C. proximus on cardiac hypertrophy and fibrosis. Male albino rats were administered C. proximus essential oil in the presence or absence of hypertrophic agonist isoproterenol. Cardiac hypertrophy and fibrosis were assessed using real-time polymerase chain reaction (PCR) and histological examination. Pre- treatment of rats with C. proximus decreased the ratio of heart weight to body weight and gene expression of hypertrophy markers atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-myosin heavy chain (β-MHC), which were induced by isoproterenol. Moreover, C. proximus prevented the increase in gene expression of fibrosis markers procollagen I and procollagen III and alleviated the collagen volume fraction caused by isoproterenol. The pre- treatment with C. proximus essential oil conferred cardio-protection against isoproterenol- induced cardiac hypertrophy and fibrosis.</jats:p
Cymbopogon Proximus Essential Oil Protects Rats against Isoproterenol-Induced Cardiac Hypertrophy and Fibrosis
Cardiac hypertrophy is an independent risk factor of many cardiovascular diseases. Several cardiovascular protective properties of Cymbopogon proximus have been reported. However, no reports investigating the direct effect of C. proximus essential oil on the heart are available. The goal of this study was to explore the cardioprotective effect of C. proximus on cardiac hypertrophy and fibrosis. Male albino rats were administered C. proximus essential oil in the presence or absence of hypertrophic agonist isoproterenol. Cardiac hypertrophy and fibrosis were assessed using real-time polymerase chain reaction (PCR) and histological examination. Pre- treatment of rats with C. proximus decreased the ratio of heart weight to body weight and gene expression of hypertrophy markers atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-myosin heavy chain (β-MHC), which were induced by isoproterenol. Moreover, C. proximus prevented the increase in gene expression of fibrosis markers procollagen I and procollagen III and alleviated the collagen volume fraction caused by isoproterenol. The pre- treatment with C. proximus essential oil conferred cardio-protection against isoproterenol- induced cardiac hypertrophy and fibrosis
- …
