32,623 research outputs found
Recommended from our members
A Double Error Dynamic Asymptote Model of Associative Learning
In this paper a formal model of associative learning is presented which incorporates representational and computational mechanisms that, as a coherent corpus, empower it to make accurate predictions of a wide variety of phenomena that so far have eluded a unified account in learning theory. In particular, the Double Error Dynamic Asymptote (DDA) model introduces: 1) a fully-connected network architecture in which stimuli are represented as temporally clustered elements that associate to each other, so that elements of one cluster engender activity on other clusters, which naturally implements neutral stimuli associations and mediated learning; 2) a predictor error term within the traditional error correction rule (the double error), which reduces the rate of learning for expected predictors; 3) a revaluation associability rate that operates on the assumption that the outcome predictiveness is tracked over time so that prolonged uncertainty is learned, reducing the levels of attention to initially surprising outcomes; and critically 4) a biologically plausible variable asymptote, which encapsulates the principle of Hebbian learning, leading to stronger associations for similar levels of cluster activity. The outputs of a set of simulations of the DDA model are presented along with empirical results from the literature. Finally, the predictive scope of the model is discussed
SPICE modelling of photoluminescence and electroluminescence based current-voltage curves of solar cells for concentration applications
Quantitative photoluminescence (PL) or electroluminescence (EL) experiments can be used to probe fast and in a non-destructive way the current-voltage (IV) characteristics of individual subcells in a multi-junction device, information that is, otherwise, not available. PL-based IV has the advantage that it is contactless and can be performed even in partly finished devices, allowing for an early diagnosis of the expected performance of the solar cells in the production environment. In this work we simulate the PL- and EL-based IV curves of single junction solar cells to assess their validity compared with the true IV curve and identify injection regimes where artefacts might appear due to the limited in-plane carrier transport in the solar cell layers. We model the whole photovoltaic device as a network of sub-circuits, each of them describing the solar cell behaviour using the two diode model. The sub-circuits are connected to the neighbouring ones with a resistor, representing the in-plane transport in the cell. The resulting circuit, involving several thousand subcircuits, is solved using SPICE
Infrared 3D Observations of Nearby Active Galaxies
We present multi-wavelength imaging observations of three nearby and famous
active galaxies obtained with NICMOS, ISOCAM and the MPE near-IR integral field
spectrometer. The data reveal a variety of features and properties that are
missed in optical studies and in traditional IR monodimensional spectroscopy.Comment: 6 pages, to appear in "Imaging the Universe in Three Dimensions:
Astrophysics with Advanced Multi-Wavelength Imaging Devices", eds. W. van
Breugel and J. Bland-Hawthorn, needs pasp3D.st
The group of strong Galois objects associated to a cocommutative Hopf quasigroup
Let H be a cocommutative faithfully flat Hopf quasigroup in a strict
symmetric monoidal category with equalizers. In this paper we introduce the
notion of (strong) Galois H-object and we prove that the set of isomorphism
classes of (strong) Galois H-objects is a (group) monoid which coincides, in
the Hopf algebra setting, with the Galois group of H-Galois objects introduced
by Chase and Sweedler
Further constraints on the optical transmission spectrum of HAT-P-1b
We report on novel observations of HAT-P-1 aimed at constraining the optical
transmission spectrum of the atmosphere of its transiting Hot-Jupiter
exoplanet. Ground-based differential spectrophotometry was performed over two
transit windows using the DOLORES spectrograph at the Telescopio Nazionale
Galileo (TNG). Our measurements imply an average planet to star radius ratio
equal to =(0.11590.0005). This result is consistent
with the value obtained from recent near infrared measurements of this object
but differs from previously reported optical measurements being lower by around
4.4 exoplanet scale heights. Analyzing the data over 5 different spectral bins
600\AA wide we observed a single peaked spectrum (3.7 level)
with a blue cut-off corresponding to the blue edge of the broad absorption wing
of sodium and an increased absorption in the region in between 6180-7400\AA. We
also infer that the width of the broad absorption wings due to alkali metals is
likely narrower than the one implied by solar abundance clear atmospheric
models. We interpret the result as evidence that HAT-P-1b has a partially clear
atmosphere at optical wavelengths with a more modest contribution from an
optical absorber than previously reported.Comment: Accepted by Ap
- …
