4,596 research outputs found

    Effective interaction between active colloids and fluid interfaces induced by Marangoni flows

    Full text link
    We show theoretically that near a fluid-fluid interface a single active colloidal particle generating, e.g., chemicals or a temperature gradient experiences an effective force of hydrodynamic origin. This force is due to the fluid flow driven by Marangoni stresses induced by the activity of the particle; it decays very slowly with the distance from the interface, and can be attractive or repulsive depending on how the activity modifies the surface tension. We show that, for typical systems, this interaction can dominate the dynamics of the particle as compared to Brownian motion, dispersion forces, or self-phoretic effects. In the attractive case, the interaction promotes the self-assembly of particles into a crystal-like monolayer at the interface.Comment: The manuscript proper and the supplementary information have been merged consecutively into a single PDF fil

    Phase coexistence in a monolayer of active particles induced by Marangoni flows

    Full text link
    Thermally or chemically active colloids generate thermodynamic gradients in the solution in which they are immersed and thereby induce hydrodynamic flows that affect their dynamical evolution. Here we study a mean-field model for the many-body dynamics of a monolayer of active particles located at a fluid-fluid interface. In this case, the activity of the particles creates long-ranged Marangoni flows due to the response of the interface, which compete with the direct interaction between the particles. For the most interesting case of a r3r^{-3} soft repulsion that models the electrostatic or magnetic interparticle forces, we show that an "onion-like" density distribution will develop within the monolayer. For a sufficiently large average density, two-dimensional phase transitions (freezing from liquid to hexatic, and melting from solid to hexatic) should be observable in a radially stratified structure. Furthermore, the analysis allows us to conclude that, while the activity may be too weak to allow direct detection of such induced Marangoni flows, it is relevant as a collective effect in the emergence of the experimentally observable spatial structure of phase coexistences noted above. Finally, the relevance of these results for potential experimental realizations is critically discussed.Comment: 11 page

    Collective dynamics of chemically active particles trapped at a fluid interface

    Full text link
    Chemically active colloids generate changes in the chemical composition of their surrounding solution and thereby induce flows in the ambient fluid which affect their dynamical evolution. Here we study the many-body dynamics of a monolayer of active particles trapped at a fluid-fluid interface. To this end we consider a mean-field model which incorporates the direct pair interaction (including also the capillary interaction which is caused specifically by the interfacial trapping) as well as the effect of hydrodynamic interactions (including the Marangoni flow induced by the response of the interface to the chemical activity). The values of the relevant physical parameters for typical experimental realizations of such systems are estimated and various scenarios, which are predicted by our approach for the dynamics of the monolayer, are discussed. In particular, we show that the chemically-induced Marangoni flow can prevent the clustering instability driven by the capillary attraction.Comment: 8 pages, 2 figure

    Modelling inflation in China - a regional perspective

    Get PDF
    We model provincial inflation in China during the reform period. In particular, we are interested in the ability of the hybrid New Keynesian Phillips Curve (NKPC) to capture the inflation process at the provincial level. The study highlights differences in inflation formation and shows that the NKPC provides a reasonable description of the inflation process only for the coastal provinces. A probit analysis suggests that the forwardlooking inflation component and the output gap are important inflation drivers in provinces that have advanced most in marketisation of the economy and have most likely experienced excess demand pressures. These results have implications for the relative effectiveness of monetary policy across the Chinese provinces. JEL Classification: E31, C22China, GMM, inflation, New Keynesian Phillips curve, Regional

    Doped carrier formulation of the t-J model: the projection constraint and the effective Kondo-Heisenberg lattice representation

    Full text link
    We show that the recently proposed doped carrier Hamiltonian formulation of the t-J model should be complemented with the constraint that projects out the unphysical states. With this new important ingredient, the previously used and seemingly different spin-fermion representations of the t-J model are shown to be gauge related to each other. This new constraint can be treated in a controlled way close to half-filling suggesting that the doped carrier representation provides an appropriate theoretical framework to address the t-J model in this region. This constraint also suggests that the t-J model can be mapped onto a Kondo-Heisenberg lattice model. Such a mapping highlights important physical similarities between the quasi two-dimensional heavy fermions and the high-Tc_c superconductors. Finally we discuss the physical implications of our model representation relating in particular the small versus large Fermi surface crossover to the closure of the lattice spin gap.Comment: corrected and enlarged versio
    corecore