22,679 research outputs found
The dynamics of dissipative multi-fluid neutron star cores
We present a Newtonian multi-fluid formalism for superfluid neutron star
cores, focussing on the additional dissipative terms that arise when one takes
into account the individual dynamical degrees of freedom associated with the
coupled "fluids". The problem is of direct astrophysical interest as the nature
of the dissipative terms can have significant impact on the damping of the
various oscillation modes of the star and the associated gravitational-wave
signatures. A particularly interesting application concerns the
gravitational-wave driven instability of f- and r-modes. We apply the developed
formalism to two specific three-fluid systems: (i) a hyperon core in which both
Lambda and Sigma^- hyperons are present, and (ii) a core of deconfined quarks
in the colour-flavour-locked phase in which a population of neutral K^0 kaons
is present. The formalism is, however, general and can be applied to other
problems in neutron-star dynamics (such as the effect of thermal excitations
close to the superfluid transition temperature) as well as laboratory
multi-fluid systems.Comment: RevTex, no figure
Relativistic Two-stream Instability
We study the (local) propagation of plane waves in a relativistic,
non-dissipative, two-fluid system, allowing for a relative velocity in the
"background" configuration. The main aim is to analyze relativistic two-stream
instability. This instability requires a relative flow -- either across an
interface or when two or more fluids interpenetrate -- and can be triggered,
for example, when one-dimensional plane-waves appear to be left-moving with
respect to one fluid, but right-moving with respect to another. The dispersion
relation of the two-fluid system is studied for different two-fluid equations
of state: (i) the "free" (where there is no direct coupling between the fluid
densities), (ii) coupled, and (iii) entrained (where the fluid momenta are
linear combinations of the velocities) cases are considered in a
frame-independent fashion (eg. no restriction to the rest-frame of either
fluid). As a by-product of our analysis we determine the necessary conditions
for a two-fluid system to be causal and absolutely stable and establish a new
constraint on the entrainment.Comment: 15 pages, 2 eps-figure
Inclusion of mussel meal in diets to growing/finishing pigs
This study showed that inclusion of mussel meal in diets to growing/finishing pigs yielded growth rate similar to those obtained with a conventional diet, whereas feed conversion ratio was higher. This implies that mussel meal is a potential alternative protein source that can replace fish and soybean meal in organic diets. By using mussels it would be possible to compose diets with 100% organic feed ingredients. However, mussel meal is currently expensive to produce and in addition more research regarding optimal inclusion level and possible off-flavor of the meat is needed
The Spin Distribution of Fast Spinning Neutron Stars in Low Mass X-Ray Binaries: Evidence for Two Sub-Populations
We study the current sample of rapidly rotating neutron stars in both
accreting and non-accreting binaries in order to determine whether the spin
distribution of accreting neutron stars in low-mass X-ray binaries can be
reconciled with current accretion torque models. We perform a statistical
analysis of the spin distributions and show that there is evidence for two
sub-populations among low-mass X-ray binaries, one at relatively low spin
frequency, with an average of ~300 Hz and a broad spread, and a peaked
population at higher frequency with average spin frequency of ~575 Hz. We show
that the two sub-populations are separated by a cut-point at a frequency of
~540 Hz. We also show that the spin frequency of radio millisecond pulsars does
not follow a log-normal distribution and shows no evidence for the existence of
distinct sub-populations. We discuss the uncertainties of different accretion
models and speculate that either the accreting neutron star cut-point marks the
onset of gravitational waves as an efficient mechanism to remove angular
momentum or some of the neutron stars in the fast sub-population do not evolve
into radio millisecond pulsars.Comment: Submitted to Ap
Superfluid instability of r-modes in "differentially rotating" neutron stars
Superfluid hydrodynamics affects the spin-evolution of mature neutron stars,
and may be key to explaining timing irregularities such as pulsar glitches.
However, most models for this phenomenon exclude the global instability
required to trigger the event. In this paper we discuss a mechanism that may
fill this gap. We establish that small scale inertial r-modes become unstable
in a superfluid neutron star that exhibits a rotational lag, expected to build
up due to vortex pinning as the star spins down. Somewhat counterintuitively,
this instability arises due to the (under normal circumstances dissipative)
vortex-mediated mutual friction. We explore the nature of the superfluid
instability for a simple incompressible model, allowing for entrainment
coupling between the two fluid components. Our results recover a previously
discussed dynamical instability in systems where the two components are
strongly coupled. In addition, we demonstrate for the first time that the
system is secularly unstable (with a growth time that scales with the mutual
friction) throughout much of parameter space. Interestingly, large scale
r-modes are also affected by this new aspect of the instability. We analyse the
damping effect of shear viscosity, which should be particularly efficient at
small scales, arguing that it will not be sufficient to completely suppress the
instability in astrophysical systems.Comment: RevTex, 11 figure
The nonlinear development of the relativistic two-stream instability
The two-stream instability has been mooted as an explanation for a range of
astrophysical applications from GRBs and pulsar glitches to cosmology. Using
the first nonlinear numerical simulations of relativistic multi-species
hydrodynamics we show that the onset and initial growth of the instability is
very well described by linear perturbation theory. In the later stages the
linear and nonlinear description match only qualitatively, and the instability
does not saturate even in the nonlinear case by purely ideal hydrodynamic
effects.Comment: 15 pages, 9 figure
R-mode oscillations and rocket effect in rotating superfluid neutron stars. I. Formalism
We derive the hydrodynamical equations of r-mode oscillations in neutron
stars in presence of a novel damping mechanism related to particle number
changing processes. The change in the number densities of the various species
leads to new dissipative terms in the equations which are responsible of the
{\it rocket effect}. We employ a two-fluid model, with one fluid consisting of
the charged components, while the second fluid consists of superfluid neutrons.
We consider two different kind of r-mode oscillations, one associated with
comoving displacements, and the second one associated with countermoving, out
of phase, displacements.Comment: 10 page
- …
