2,083 research outputs found

    Quantum work relations and response theory

    Full text link
    A universal quantum work relation is proved for isolated time-dependent Hamiltonian systems in a magnetic field as the consequence of microreversibility. This relation involves a functional of an arbitrary observable. The quantum Jarzynski equality is recovered in the case this observable vanishes. The Green-Kubo formula and the Casimir-Onsager reciprocity relations are deduced thereof in the linear response regime

    Thermodynamic time asymmetry in nonequilibrium fluctuations

    Get PDF
    We here present the complete analysis of experiments on driven Brownian motion and electric noise in a RCRC circuit, showing that thermodynamic entropy production can be related to the breaking of time-reversal symmetry in the statistical description of these nonequilibrium systems. The symmetry breaking can be expressed in terms of dynamical entropies per unit time, one for the forward process and the other for the time-reversed process. These entropies per unit time characterize dynamical randomness, i.e., temporal disorder, in time series of the nonequilibrium fluctuations. Their difference gives the well-known thermodynamic entropy production, which thus finds its origin in the time asymmetry of dynamical randomness, alias temporal disorder, in systems driven out of equilibrium.Comment: to be published in : Journal of Statistical Mechanics: theory and experimen

    Stochastic thermodynamics of chemical reaction networks

    Full text link
    For chemical reaction networks described by a master equation, we define energy and entropy on a stochastic trajectory and develop a consistent nonequilibrium thermodynamic description along a single stochastic trajectory of reaction events. A first-law like energy balance relates internal energy, applied (chemical) work and dissipated heat for every single reaction. Entropy production along a single trajectory involves a sum over changes in the entropy of the network itself and the entropy of the medium. The latter is given by the exchanged heat identified through the first law. Total entropy production is constrained by an integral fluctuation theorem for networks arbitrarily driven by time-dependent rates and a detailed fluctuation theorem for networks in the steady state. Further exact relations like a generalized Jarzynski relation and a generalized Clausius inequality are discussed. We illustrate these results for a three-species cyclic reaction network which exhibits nonequilibrium steady states as well as transitions between different steady states.Comment: 14 pages, 2 figures, accepted for publication in J. Chem. Phy

    Universal Properties of Nonlinear Response Functions of Nonequilibrium Steady States

    Full text link
    We derive universal properties of nonlinear response functions of nonequilibrium steady states. In particular, sum rules and asymptotic behaviors are derived. Their consequences are illustrated for nonlinear optical materials and nonlinear electrical conductors.Comment: 10 pages, 1 figure; added a few sentences and references to explain detail

    Gallavotti-Cohen-Type symmetry related to cycle decompositions for Markov chains and biochemical applications

    Full text link
    We slightly extend the fluctuation theorem obtained in \cite{LS} for sums of generators, considering continuous-time Markov chains on a finite state space whose underlying graph has multiple edges and no loop. This extended frame is suited when analyzing chemical systems. As simple corollary we derive in a different method the fluctuation theorem of D. Andrieux and P. Gaspard for the fluxes along the chords associated to a fundamental set of oriented cycles \cite{AG2}. We associate to each random trajectory an oriented cycle on the graph and we decompose it in terms of a basis of oriented cycles. We prove a fluctuation theorem for the coefficients in this decomposition. The resulting fluctuation theorem involves the cycle affinities, which in many real systems correspond to the macroscopic forces. In addition, the above decomposition is useful when analyzing the large deviations of additive functionals of the Markov chain. As example of application, in a very general context we derive a fluctuation relation for the mechanical and chemical currents of a molecular motor moving along a periodic filament.Comment: 23 pages, 5 figures. Correction

    Dynamical fluctuations for semi-Markov processes

    Full text link
    We develop an Onsager-Machlup-type theory for nonequilibrium semi-Markov processes. Our main result is an exact large time asymptotics for the joint probability of the occupation times and the currents in the system, establishing some generic large deviation structures. We discuss in detail how the nonequilibrium driving and the non-exponential waiting time distribution influence the occupation-current statistics. The violation of the Markov condition is reflected in the emergence of a new type of nonlocality in the fluctuations. Explicit solutions are obtained for some examples of driven random walks on the ring.Comment: Minor changes, accepted for publication in Journal of Physics

    General properties of response functions of nonequilibrium steady states

    Full text link
    We derive general properties, which hold for both quantum and classical systems, of response functions of nonequilibrium steady states. We clarify differences from those of equilibrium states. In particular, sum rules and asymptotic behaviors are derived, and their implications are discussed. Since almost no assumptions are made, our results are applicable to diverse physical systems. We also demonstrate our results by a molecular dynamics simulation of a many-body interacting system.Comment: After publication of this paper, several typos were found, which have been fixed in the erratum (J. Phys. Soc. Jpn., 80 (2011) 128001). All the corrections have been made in this updated arXive version. 13 pages with 3 figure

    A meaningful expansion around detailed balance

    Full text link
    We consider Markovian dynamics modeling open mesoscopic systems which are driven away from detailed balance by a nonconservative force. A systematic expansion is obtained of the stationary distribution around an equilibrium reference, in orders of the nonequilibrium forcing. The first order around equilibrium has been known since the work of McLennan (1959), and involves the transient irreversible entropy flux. The expansion generalizes the McLennan formula to higher orders, complementing the entropy flux with the dynamical activity. The latter is more kinetic than thermodynamic and is a possible realization of Landauer's insight (1975) that, for nonequilibrium, the relative occupation of states also depends on the noise along possible escape routes. In that way nonlinear response around equilibrium can be meaningfully discussed in terms of two main quantities only, the entropy flux and the dynamical activity. The expansion makes mathematical sense as shown in the simplest cases from exponential ergodicity.Comment: 19 page

    Fluctuation theorems for stochastic dynamics

    Full text link
    Fluctuation theorems make use of time reversal to make predictions about entropy production in many-body systems far from thermal equilibrium. Here we review the wide variety of distinct, but interconnected, relations that have been derived and investigated theoretically and experimentally. Significantly, we demonstrate, in the context of Markovian stochastic dynamics, how these different fluctuation theorems arise from a simple fundamental time-reversal symmetry of a certain class of observables. Appealing to the notion of Gibbs entropy allows for a microscopic definition of entropy production in terms of these observables. We work with the master equation approach, which leads to a mathematically straightforward proof and provides direct insight into the probabilistic meaning of the quantities involved. Finally, we point to some experiments that elucidate the practical significance of fluctuation relations.Comment: 48 pages, 2 figures. v2: minor changes for consistency with published versio
    corecore