2,083 research outputs found
Quantum work relations and response theory
A universal quantum work relation is proved for isolated time-dependent
Hamiltonian systems in a magnetic field as the consequence of
microreversibility. This relation involves a functional of an arbitrary
observable. The quantum Jarzynski equality is recovered in the case this
observable vanishes. The Green-Kubo formula and the Casimir-Onsager reciprocity
relations are deduced thereof in the linear response regime
Thermodynamic time asymmetry in nonequilibrium fluctuations
We here present the complete analysis of experiments on driven Brownian
motion and electric noise in a circuit, showing that thermodynamic entropy
production can be related to the breaking of time-reversal symmetry in the
statistical description of these nonequilibrium systems. The symmetry breaking
can be expressed in terms of dynamical entropies per unit time, one for the
forward process and the other for the time-reversed process. These entropies
per unit time characterize dynamical randomness, i.e., temporal disorder, in
time series of the nonequilibrium fluctuations. Their difference gives the
well-known thermodynamic entropy production, which thus finds its origin in the
time asymmetry of dynamical randomness, alias temporal disorder, in systems
driven out of equilibrium.Comment: to be published in : Journal of Statistical Mechanics: theory and
experimen
Stochastic thermodynamics of chemical reaction networks
For chemical reaction networks described by a master equation, we define
energy and entropy on a stochastic trajectory and develop a consistent
nonequilibrium thermodynamic description along a single stochastic trajectory
of reaction events. A first-law like energy balance relates internal energy,
applied (chemical) work and dissipated heat for every single reaction. Entropy
production along a single trajectory involves a sum over changes in the entropy
of the network itself and the entropy of the medium. The latter is given by the
exchanged heat identified through the first law. Total entropy production is
constrained by an integral fluctuation theorem for networks arbitrarily driven
by time-dependent rates and a detailed fluctuation theorem for networks in the
steady state. Further exact relations like a generalized Jarzynski relation and
a generalized Clausius inequality are discussed. We illustrate these results
for a three-species cyclic reaction network which exhibits nonequilibrium
steady states as well as transitions between different steady states.Comment: 14 pages, 2 figures, accepted for publication in J. Chem. Phy
Universal Properties of Nonlinear Response Functions of Nonequilibrium Steady States
We derive universal properties of nonlinear response functions of
nonequilibrium steady states. In particular, sum rules and asymptotic behaviors
are derived. Their consequences are illustrated for nonlinear optical materials
and nonlinear electrical conductors.Comment: 10 pages, 1 figure; added a few sentences and references to explain
detail
Gallavotti-Cohen-Type symmetry related to cycle decompositions for Markov chains and biochemical applications
We slightly extend the fluctuation theorem obtained in \cite{LS} for sums of
generators, considering continuous-time Markov chains on a finite state space
whose underlying graph has multiple edges and no loop. This extended frame is
suited when analyzing chemical systems. As simple corollary we derive in a
different method the fluctuation theorem of D. Andrieux and P. Gaspard for the
fluxes along the chords associated to a fundamental set of oriented cycles
\cite{AG2}.
We associate to each random trajectory an oriented cycle on the graph and we
decompose it in terms of a basis of oriented cycles. We prove a fluctuation
theorem for the coefficients in this decomposition. The resulting fluctuation
theorem involves the cycle affinities, which in many real systems correspond to
the macroscopic forces. In addition, the above decomposition is useful when
analyzing the large deviations of additive functionals of the Markov chain. As
example of application, in a very general context we derive a fluctuation
relation for the mechanical and chemical currents of a molecular motor moving
along a periodic filament.Comment: 23 pages, 5 figures. Correction
Dynamical fluctuations for semi-Markov processes
We develop an Onsager-Machlup-type theory for nonequilibrium semi-Markov
processes. Our main result is an exact large time asymptotics for the joint
probability of the occupation times and the currents in the system,
establishing some generic large deviation structures. We discuss in detail how
the nonequilibrium driving and the non-exponential waiting time distribution
influence the occupation-current statistics. The violation of the Markov
condition is reflected in the emergence of a new type of nonlocality in the
fluctuations. Explicit solutions are obtained for some examples of driven
random walks on the ring.Comment: Minor changes, accepted for publication in Journal of Physics
General properties of response functions of nonequilibrium steady states
We derive general properties, which hold for both quantum and classical
systems, of response functions of nonequilibrium steady states. We clarify
differences from those of equilibrium states. In particular, sum rules and
asymptotic behaviors are derived, and their implications are discussed. Since
almost no assumptions are made, our results are applicable to diverse physical
systems. We also demonstrate our results by a molecular dynamics simulation of
a many-body interacting system.Comment: After publication of this paper, several typos were found, which have
been fixed in the erratum (J. Phys. Soc. Jpn., 80 (2011) 128001). All the
corrections have been made in this updated arXive version. 13 pages with 3
figure
A meaningful expansion around detailed balance
We consider Markovian dynamics modeling open mesoscopic systems which are
driven away from detailed balance by a nonconservative force. A systematic
expansion is obtained of the stationary distribution around an equilibrium
reference, in orders of the nonequilibrium forcing. The first order around
equilibrium has been known since the work of McLennan (1959), and involves the
transient irreversible entropy flux. The expansion generalizes the McLennan
formula to higher orders, complementing the entropy flux with the dynamical
activity. The latter is more kinetic than thermodynamic and is a possible
realization of Landauer's insight (1975) that, for nonequilibrium, the relative
occupation of states also depends on the noise along possible escape routes. In
that way nonlinear response around equilibrium can be meaningfully discussed in
terms of two main quantities only, the entropy flux and the dynamical activity.
The expansion makes mathematical sense as shown in the simplest cases from
exponential ergodicity.Comment: 19 page
Fluctuation theorems for stochastic dynamics
Fluctuation theorems make use of time reversal to make predictions about
entropy production in many-body systems far from thermal equilibrium. Here we
review the wide variety of distinct, but interconnected, relations that have
been derived and investigated theoretically and experimentally. Significantly,
we demonstrate, in the context of Markovian stochastic dynamics, how these
different fluctuation theorems arise from a simple fundamental time-reversal
symmetry of a certain class of observables. Appealing to the notion of Gibbs
entropy allows for a microscopic definition of entropy production in terms of
these observables. We work with the master equation approach, which leads to a
mathematically straightforward proof and provides direct insight into the
probabilistic meaning of the quantities involved. Finally, we point to some
experiments that elucidate the practical significance of fluctuation relations.Comment: 48 pages, 2 figures. v2: minor changes for consistency with published
versio
Recommended from our members
Measurements of μμ pairs from open heavy flavor and Drell-Yan in p+p collisions at s =200 GeV
PHENIX reports differential cross sections of μμ pairs from semileptonic heavy-flavor decays and the Drell-Yan production mechanism measured in p+p collisions at s=200 GeV at forward and backward rapidity (1.2<|η|<2.2). The μμ pairs from cc, bb, and Drell-Yan are separated using a template fit to unlike- and like-sign muon pair spectra in mass and pT. The azimuthal opening angle correlation between the muons from cc and bb decays and the pair-pT distributions are compared to distributions generated using pythia and powheg models, which both include next-to-leading order processes. The measured distributions for pairs from cc are consistent with pythia calculations. The cc data present narrower azimuthal correlations and softer pT distributions compared to distributions generated from powheg. The bb data are well described by both models. The extrapolated total cross section for bottom production is 3.75±0.24(stat)±0.500.35(syst)±0.45(global) [μb], which is consistent with previous measurements at the Relativistic Heavy Ion Collider in the same system at the same collision energy and is approximately a factor of 2 higher than the central value calculated with theoretical models. The measured Drell-Yan cross section is in good agreement with next-to-leading-order quantum-chromodynamics calculations
- …
