4,683 research outputs found

    Winning customer loyalty in an automotive company through Six Sigma: a case study

    Get PDF
    Six Sigma is a disciplined approach to improving product, process and service quality. Since its inception at Motorola in the mid 1980s Six Sigma has evolved significantly and continues to expand to improve process performance, enhance business profitability and increase customer satisfaction. This paper presents an extensive literature review based on the experiences of both academics and practitioners on Six Sigma, followed by the application of the Define, Measure, Analyse, Improve, Control (DMAIC) problem-solving methodology to identify the parameters causing casting defects and to control these parameters. The results of the study are based on the application of tools and techniques in the DMAIC methodology, i.e. Pareto Analysis, Measurement System Analysis, Regression Analysis and Design of Experiment. The results of the study show that the application of the Six Sigma methodology reduced casting defects and increased the process capability of the process from 0.49 to 1.28. The application of DMAIC has resulted in a significant financial impact (over U.S. $110 000 per annum) on the bottom-line of the company

    Theoretical Total Cross Sections of e-H2O Collisions in Water, Ice and Dimer Forms

    Get PDF

    Evidence Favoring a Positive Feedback Loop for Physiologic Auto Upregulation of hnRNP-E1 during Prolonged Folate Deficiency in Human Placental Cells

    Get PDF
    Background: Previously, we determined that heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) functions as an intracellular physiologic sensor of folate deficiency. In this model, l-homocysteine, which accumulates intracellularly in proportion to the extent of folate deficiency, covalently binds to and thereby activates homocysteinylated hnRNP-E1 to interact with folate receptor-α mRNA; this high-affinity interaction triggers the translational upregulation of cell surface folate receptors, which enables cells to optimize folate uptake from the external milieu. However, integral to this model is the need for ongoing generation of hnRNP-E1 to replenish homocysteinylated hnRNP-E1 that is degraded.Objective: We searched for an interrelated physiologic mechanism that could also maintain the steady-state concentration of hnRNP-E1 during prolonged folate deficiency.Methods: A novel RNA-protein interaction was functionally characterized by using molecular and biochemical approaches in vitro and in vivo.Results: l-homocysteine triggered a dose-dependent high-affinity interaction between hnRNP-E1 and a 25-nucleotide cis element within the 5'-untranslated region of hnRNP-E1 mRNA; this led to a proportionate increase in these RNA-protein complexes, and translation of hnRNP-E1 both in vitro and within placental cells. Targeted perturbation of this RNA-protein interaction either by specific 25-nucleotide antisense oligonucleotides or mutation within this cis element or by small interfering RNA to hnRNP-E1 mRNA significantly reduced cellular biosynthesis of hnRNP-E1. Conversely, transfection of hnRNP-E1 mutant proteins that mimicked homocysteinylated hnRNP-E1 stimulated both cellular hnRNP-E1 and folate receptor biosynthesis. In addition, ferrous sulfate heptahydrate [iron(II)], which also binds hnRNP-E1, significantly perturbed this l-homocysteine-triggered RNA-protein interaction in a dose-dependent manner. Finally, folate deficiency induced dual upregulation of hnRNP-E1 and folate receptors in cultured human cells and tumor xenografts, and more selectively in various fetal tissues of folate-deficient dams.Conclusions: This novel positive feedback loop amplifies hnRNP-E1 during prolonged folate deficiency and thereby maximizes upregulation of folate receptors in order to restore folate homeostasis toward normalcy in placental cells. It will also functionally impact several other mRNAs of the nutrition-sensitive, folate-responsive posttranscriptional RNA operon that is orchestrated by homocysteinylated hnRNP-E1

    Network sensitivity to geographical configuration

    Get PDF
    Gravitational wave astronomy will require the coordinated analysis of data from the global network of gravitational wave observatories. Questions of how to optimally configure the global network arise in this context. We have elsewhere proposed a formalism which is employed here to compare different configurations of the network, using both the coincident network analysis method and the coherent network analysis method. We have constructed a network model to compute a figure-of-merit based on the detection rate for a population of standard-candle binary inspirals. We find that this measure of network quality is very sensitive to the geographic location of component detectors under a coincident network analysis, but comparatively insensitive under a coherent network analysis.Comment: 7 pages, 4 figures, accepted for proceedings of the 4th Edoardo Amaldi conference, incorporated referees' suggestions and corrected diagra

    P Wave Meson Spectrum in a Relativistic Model with Instanton Induced Interaction

    Full text link
    On the basis of the phenomenological relativistic harmonic models for quarks we have obtained the masses of P wave mesons. The full Hamiltonian used in the investigation has Lorentz scalar + vector confinement potential, along with one gluon exchange potential (OGEP) and the instanton-induced quark-antiquark interaction (III). A good agreement is obtained with the experimental masses. The respective role of III and OGEP for the determination of the meson masses is discussed.Comment: Corrected typo

    Zooplankton abundance in the continental shelf waters of the northeast coast of India

    Get PDF
    Higher concentrations of zooplankton standing stock and population occurred in the region off Chilka lake and Paradip (19° 10'N-19° 55'N and 85°09'E-86° 50'E) during January and off Visakhapatnam (17°30'N- 18°28'N and 83°14'E- 84°29*E) during November and April. The most productive period along the northwestern part of the Bay of Bengal was the northeast monsoon season (October-January) followed by the premonsoon season (February-May). High abundance of copepods, chaetognaths, siphonophores, cladocerans, fish larvae, planktonic molluscs, amphipods, foraminifers and larval polychaetes constituted the northeast monsoon maximum. Very low biomass values were recorded during the southwest monsoon season (June-September). The neretic zone up to 50 m depth was rich in zooplankton population during northeast monsoon and further to a lesser extent up to 100 m during the premonsoon season. However, a steady decline was evident with increasing depth zones. The less saline northern part exhibited remarkable differences in the abundance of the population and standing stock in such a way that 63% of the total was confined to the northern region. Fish eggs were predominant during February-May and larvae in July and January-February. The peak period of the zooplankton population coincided with the maximum landings of the pelagic and demersal fishery resources of the northwestern coast of the Bay of Bengal
    corecore