278 research outputs found
Caracterización fisicoquímica del agua del estero Nonguén y su confluencia con el río Andalién, región del Biobío. Variación en relación a los distintos usos de suelo en su cuenca.
La cuenca del estero Nonguén es un ejemplo de la realidad que se observa en la mayoría de las cuencas localizadas en zonas urbanas, debido al alto grado de intervención que presenta en su parte baja, influenciada por el constante aumento de la alta densidad poblacional. Sin embargo, en su parte alta aún es posible observar sitios con muy poca intervención que permiten la conservación de ecosistemas acuáticos en condiciones relativamente prístinas. Se realizó una caracterización fisicoquímica del agua del estero Nonguén y de la zona de confluencia con el río Andalién. Los resultados mostraron que la parte alta de la cuenca presenta aguas de muy buena calidad, pero en la parte baja, a medida que la actividad urbana comienza a ser más intensa, esta calidad comienza a disminuir mostrando condiciones fisicoquímicas completamente distintas a las demás zonas evaluadas (ANOSIM, parwise test R = 1; p = 0.333). Palabras clave: calidad de agua, contaminación, cuenca
Aquatic community response to volcanic eruptions on the Ecuadorian Andean flank: evidence from the palaeoecological record
Aquatic ecosystems in the tropical Andes are under increasing pressure from human modification of the landscape (deforestation and dams) and climatic change (increase of extreme events and 1.5 °C on average temperatures are projected for AD 2100). However, the resilience of these ecosystems to perturbations is poorly understood. Here we use a multi-proxy palaeoecological approach to assess the response of aquatic ecosystems to a major mechanism for natural disturbance, volcanic ash deposition. Specifically, we present data from two Neotropical lakes located on the eastern Andean flank of Ecuador. Laguna Pindo (1°27.132′S–78°04.847′W) is a tectonically formed closed basin surrounded by a dense mid-elevation forest, whereas Laguna Baños (0°19.328′S–78°09.175′W) is a glacially formed lake with an inflow and outflow in high Andean Páramo grasslands. In each lake we examined the dynamics of chironomids and other aquatic and semi-aquatic organisms to explore the effect of thick (> 5 cm) volcanic deposits on the aquatic communities in these two systems with different catchment features. In both lakes past volcanic ash deposition was evident from four large tephras dated to c.850 cal year BP (Pindo), and 4600, 3600 and 1500 cal year BP (Baños). Examination of the chironomid and aquatic assemblages before and after the ash depositions revealed no shift in composition at Pindo, but a major change at Baños occurred after the last event around 1500 cal year BP. Chironomids at Baños changed from an assemblage dominated by Pseudochironomus and Polypedilum nubifer-type to Cricotopus/Paratrichocladius type-II, and such a dominance lasted for approximately 380 years. We suggest that, despite potential changes in the water chemistry, the major effect on the chironomid community resulted from the thickness of the tephra being deposited, which acted to shallow the water body beyond a depth threshold. Changes in the aquatic flora and fauna at the base of the trophic chain can promote cascade effects that may deteriorate the ecosystem, especially when already influenced by human activities, such as deforestation and dams, which is frequent in the high Andes
Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications
Superparamagnetic iron oxide nanoparticles
can providemultiple benefits for biomedical applications
in aqueous environments such asmagnetic separation or
magnetic resonance imaging. To increase the colloidal
stability and allow subsequent reactions, the introduction
of hydrophilic functional groups onto the particles’
surface is essential. During this process, the original
coating is exchanged by preferably covalently bonded
ligands such as trialkoxysilanes. The duration of the
silane exchange reaction, which commonly takes more
than 24 h, is an important drawback for this approach. In
this paper, we present a novel method, which introduces
ultrasonication as an energy source to dramatically
accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove
the generic character, different functional groups were
introduced on the surface including polyethylene glycol
chains, carboxylic acid, amine, and thiol groups. Their
colloidal stability in various aqueous buffer solutions as
well as human plasma and serum was investigated to
allow implementation in biomedical and sensing
applications.status: publishe
Organic pollutants in sea-surface microlayer and aerosol in thecoastal environment of Leghorn—(Tyrrhenian Sea)
The levels of dissolved and particle-associated n-alkanes, alkylbenzenes, phthalates, PAHs, anionic surfactants and
surfactant fluorescent organic matter ŽSFOM. were measured in sea-surface microlayer ŽSML. and sub-surface water ŽSSL.
samples collected in the Leghorn marine environment in September and October 1999.
Nine stations, located in the Leghorn harbour and at increasing distances from the Port, were sampled three times on the
same day. At all the stations, SML concentrations of the selected organic compounds were significantly higher than SSL
values and the enrichment factors ŽEFsSML concentrationrSSL concentration. were greater in the particulate phase than
in the dissolved phase.
SML concentrations varied greatly among the sampling sites, the highest levels Žn-alkanes 3674 mgrl, phthalates 177
mgrl, total PAHs 226 mgrl. being found in the particulate phase in the Leghorn harbour.
To improve the knowledge on pollutant exchanges between sea-surface waters and atmosphere, the validity of spray drop
adsorption model ŽSDAM. was verified for SFOM, surface-active agents, such as phthalates, and compounds which can
interact with SFOM, such as n-alkanes and PAHs. q2001 Elsevier Science B.V. All rights reserved
Anti-interleukin 2 receptor monoclonal antibodies spare phenotypically distinct T suppressor cells in vivo and exert synergistic biological effects.
The therapeutic efficacies of ART-18, ART-65, and OX-39, mouse antibodies of IgG1 isotype recognizing distinct epitopes of the p55 beta chain of the rat IL-2-R molecule, were probed in LEW rat recipients of (LEW X BN)F1 heterotopic cardiac allografts (acute rejection in untreated hosts occurs within 8 d). A 10-d course with ART-18 prolongs graft survival to approximately 21 d (p less than 0.001). Therapy with ART-65, but not with OX-39, was effective (graft survival approximately 16 and 8 d, respectively). Anti-IL-2-R mAb treatment selectively spared T cells with donor-specific suppressor functions; the CD8+ (OX8+ W3/25-) fraction from ART-18-modified recipients, and primarily the CD4+ (W3/25+ OX8-) subset from ART-65-treated hosts conferred unresponsiveness to naive syngeneic rats after adoptive transfer, increasing test graft survival to approximately 16 and 45 d, respectively. Concomitant administration of ART-18 and ART-65 to recipient animals in relatively low doses exerted a strikingly synergistic effect, with 30% of the transplants surviving indefinitely and 50% undergoing late rejection over 50 d. These studies provide evidence that anti-IL-2-R mAbs selectively spare phenotypically distinct T cells with suppressor functions. The data also suggest that in vivo targeting of functionally different IL-2-R epitopes may produce synergistic biological effects
Device-Independent Quantum Key Distribution
Cryptographic key exchange protocols traditionally rely on computational
conjectures such as the hardness of prime factorisation to provide security
against eavesdropping attacks. Remarkably, quantum key distribution protocols
like the one proposed by Bennett and Brassard provide information-theoretic
security against such attacks, a much stronger form of security unreachable by
classical means. However, quantum protocols realised so far are subject to a
new class of attacks exploiting implementation defects in the physical devices
involved, as demonstrated in numerous ingenious experiments. Following the
pioneering work of Ekert proposing the use of entanglement to bound an
adversary's information from Bell's theorem, we present here the experimental
realisation of a complete quantum key distribution protocol immune to these
vulnerabilities. We achieve this by combining theoretical developments on
finite-statistics analysis, error correction, and privacy amplification, with
an event-ready scheme enabling the rapid generation of high-fidelity
entanglement between two trapped-ion qubits connected by an optical fibre link.
The secrecy of our key is guaranteed device-independently: it is based on the
validity of quantum theory, and certified by measurement statistics observed
during the experiment. Our result shows that provably secure cryptography with
real-world devices is possible, and paves the way for further quantum
information applications based on the device-independence principle.Comment: 5+1 pages in main text and methods with 4 figures and 1 table; 37
pages of supplementary materia
Image-guided Placement of Magnetic Neuroparticles as a Potential High-Resolution Brain-Machine Interface
We are developing methods of noninvasively delivering magnetic neuroparticles™ via intranasal administration followed by image-guided magnetic propulsion to selected locations in the brain. Once placed, the particles can activate neurons via vibrational motion or magnetoelectric stimulation. Similar particles might be used to read out neuronal electrical pulses via spintronic or liquid-crystal magnetic interactions, for fast bidirectional brain-machine interface. We have shown that particles containing liquid crystals can be read out with magnetic resonance imaging (MRI) using embedded magnetic nanoparticles and that the signal is visible even for voltages comparable to physiological characteristics. Such particles can be moved within the brain (e.g., across midline) without causing changes to neurological firing
- …
