537 research outputs found

    Atomic scale engines: Cars and wheels

    Full text link
    We introduce a new approach to build microscopic engines on the atomic scale that move translationally or rotationally and can perform useful functions such as pulling of a cargo. Characteristic of these engines is the possibility to determine dynamically the directionality of the motion. The approach is based on the transformation of the fed energy to directed motion through a dynamical competition between the intrinsic lengths of the moving object and the supporting carrier.Comment: 4 pages, 3 figures (2 in color), Phys. Rev. Lett. (in print

    Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes

    Get PDF
    Current lithium batteries operate on inorganic insertion compounds to power a diverse range of applications, but recently there is a surging demand to develop environmentally friendly green electrode materials. To develop sustainable and eco-friendly lithium ion batteries, we report reversible lithium ion storage properties of a naturally occurring and abundant organic compound purpurin, which is non-toxic and derived from the plant madder. The carbonyl/hydroxyl groups present in purpurin molecules act as redox centers and reacts electrochemically with Li-ions during the charge/discharge process. The mechanism of lithiation of purpurin is fully elucidated using NMR, UV and FTIR spectral studies. The formation of the most favored six membered binding core of lithium ion with carbonyl groups of purpurin and hydroxyl groups at C-1 and C-4 positions respectively facilitated lithiation process, whereas hydroxyl group at C-2 position remains unaltered

    Neutron cross-sections for advanced nuclear systems : The n-TOF project at CERN

    Get PDF
    © Owned by the authors, published by EDP Sciences, 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedThe study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n-TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction.Peer reviewedFinal Published versio

    Elucidating the Excited State Behavior of Pyridyl Pyridinium Systems via Computational and Transient Absorption Studies of Tetrahedral Multichromophoric Arrays and their Model Compounds

    Get PDF
    The tetrahedral shape-persistent molecule 14+, containing four identical pyridyl pyridinium units connected via a sp3 hybridized carbon atom, has been investigated in detail by means of steady-state and time resolved spectroscopy. Remarkable photophysical properties are observed, particularly in comparison with protonated and methylated analogues (1H48+, 1Me48+), which exhibit substantially shorter excited state lifetimes and lower emission quantum yields. Theoretical studies have rationalized the behavior of the tetrameric molecules relative to the monomers, with DFT and TD-DFT calculations corroborating steady-state (absorption and emission) and transient absorption spectra. The behavior of the monomeric compounds (each consisting in one of the four identical subunits of the tetramers, i. e., 2+, 2H2+ and 2Me2+) considerably differs from that of the tetramers, indicating a strong electronic interaction between the subunits in the tetrameric species, likely promoted by the homoconjugation through the connecting sp3 C atom. 2+ is characterized by a peculiar S1-S2 excited state inversion, whereas the short-lived emitting S1 state of 2H2+ and 2Me2+ exhibits a partial charge-transfer character, as substantiated by spectro-electrochemical studies. Among the six investigated systems, only 14+ is a sizeable luminophore (& phi;em=0.15), which is related to the peculiar features of its singlet state.A set of tetrameric molecules with four identical subunits bearing pyridyl pyridinium or bipyridinium moieties has been investigated by means of steady-state and time resolved spectroscopy and the results are corroborated by computational studies. The behavior of the tetrameric molecules, when compared with that of the corresponding model compounds (one of the four identical arms), highlights a remarkable electronic interaction between the subunits in the array.imag

    Unexpected reactivity of cyclometalated iridium(iii) dimers. Direct synthesis of a mononuclear luminescent complex

    Get PDF
    A new synthetic method has been developed for the preparation of unexpected emissive iridium(III) complexes (A and B), directly obtained from the established [Ir(ppy)2(μ-Cl)]2 dimer, under reaction conditions in which such compounds are usually considered stable. Complex A ([Ir(ppy)2(Oppy)], where Hppy = 2-phenylpyridine and HOppy = 2-(o-hydroxyphenyl)pyridine) was obtained from the dimer without the addition of further ancillary ligands in the reaction environment, but in the presence of a basic water environment in 2-ethoxyethanol as solvent at 165 °C. The complex evidences the unexpected insertion of an oxygen atom between the iridium(III) center and the carbon atom of one ppy moiety. Under specific reaction conditions, the mer-[Ir(ppy)3] complex (B) was obtained. The presence of the right amount of water is important to maximize the formation of A relative to B. Both compounds were fully characterized by NMR spectroscopy and mass spectrometry (MS), and the X-ray structure of A was also determined. DFT calculations were used to shed light on the reaction mechanism leading to the unexpected formation of A, suggesting that the Oppy ligand is generated intramolecularly once the [Ir(ppy)2(μ-OH)]2 dimer is formed. The process is probably assisted by a redox reaction involving the second iridium(III) center in the dimer. The electrochemical and photophysical properties of complexes A and B were investigated in comparison with the well-known fac-[Ir(ppy)3] analogue (C). Complex A displays a green emission (λmax = 545 nm) with a photoluminescence quantum yield (PLQY) of nearly 40%, whereas the oxygen-free counterpart B is poorly emissive, exhibiting an orange emission (λmax = 605 nm) with a PLQY below 10%. These findings may pave the way for the direct synthesis of neutral luminescent complexes with the general formula [Ir(C^N)2(OC^N)], even using dimers with non-commercial or highly substituted C^N ligands, without the need for synthesizing the corresponding hydroxyl-substituted ancillary ligand, which may be hardly obtainable

    4-Phenyl-1,2,3-triazoles as Versatile Ligands for Cationic Cyclometalated Iridium(III) Complexes

    Get PDF
    Five cationic iridium(III) complexes (1-5) were synthesized exploiting two triazole-based cyclometalating ligands, namely, 1-methyl-4-phenyl-1H-1,2,3-triazole (A) and the corresponding mesoionic carbene 1,3-dimethyl-4-phenyl-1H-1,2,3-triazol-5-yliclene (B). From the combination of these two ligands and the ancillary one, i.e., 4,4'-di-tert-butyl-2,2'-bipyridine (for 1-3) or tert-butyl isocyanide (for 4 and 5), not only the typical bis-heteroleptic complexes but also the much less explored tris-heteroleptic analogues (2 and 5) could be synthesized. The redox and emission properties of all of the complexes are effectively fine-tuned by the different ligands: (i) cyclometalating ligand A induces a stronger highest occupied molecular orbital (HOMO) stabilization compared to B and leads to complexes with progressively narrower HOMO-lowest unoccupied molecular orbital (LUMO) and redox gaps, and lower emission energy; (ii) complexes 1-3, equipped with the bipyridine ancillary ligand, display fully reversible redox processes and emit from predominantly metal-to-ligand charge transfer (MLCT) states with high emission quantum yields, up to 60% in polymeric matrix; (iii) complexes 4 and 5, equipped with high-field isocyanide ligands, display irreversible redox processes and high-energy emission from strongly ligand-centered triplets with long emission lifetimes but relatively low quantum yields (below 6%, both in room-temperature solution and in solid state). This work demonstrates the versatility of phenyl-triazole derivatives as cyclometalating ligands with different chelation modes (i.e., C<^>N and C<^>C:) for the synthesis of photoactive iridium(III) complexes with highly tunable properties

    Giant Shape-Persistent Tetrahedral Porphyrin System: Light-Induced Charge Separation

    Get PDF
    Tetraphenylmethane appended with four pyridylpyridinium units works as a scaffold to self-assemble four ruthenium porphyrins in a tetrahedral shape-persistent giant architecture. The resulting supramolecular structure has been characterised in the solid state by X-ray single crystal analysis and in solution by various techniques. Multinuclear NMR spectroscopy confirms the 1 : 4 stoichiometry with the formation of a highly symmetric structure. The self-assembly process can be monitored by changes of the redox potentials, as well as by modifications in the visible absorption spectrum of the ruthenium porphyrin and by a complete quenching of both the bright fluorescence of the tetracationic scaffold and the weak phosphorescence of the ruthenium porphyrin. An ultrafast photoinduced electron transfer is responsible for this quenching process. The lifetime of the resulting charge separated state (800 ps) is about four times longer in the giant supramolecular structure compared to the model 1 : 1 complex formed by the ruthenium porphyrin and a single pyridylpyridinium unit. Electron delocalization over the tetrameric pyridinium structure is likely to be responsible for this effect

    A Robotic arm for optical and gamma radwaste inspection

    Get PDF
    We propose Radibot, a simple and cheap robotic arm for remote inspection, which interacts with the radwaste environment by means of a scintillation gamma detector and a video camera representing its light (< 1 kg) payload. It moves vertically thanks to a crane, while the other three degrees of freedom are obtained by means of revolute joints. A dedicated algorithm allows to automatically choose the best kinematics in order to reach a graphically selected position, while still allowing to fully drive the arm by means of a standard videogame joypad
    corecore