677 research outputs found
A global assessment of the impact of climate change on water scarcity
This paper presents a global scale assessment of the impact of climate change on water scarcity. Patterns of climate change from 21 Global Climate Models (GCMs) under four SRES scenarios are applied to a global hydrological model to estimate water resources across 1339 watersheds. The Water Crowding Index (WCI) and the Water Stress Index (WSI) are used to calculate exposure to increases and decreases in global water scarcity due to climate change. 1.6 (WCI) and 2.4 (WSI) billion people are estimated to be currently living within watersheds exposed to water scarcity. Using the WCI, by 2050 under the A1B scenario, 0.5 to 3.1 billion people are exposed to an increase in water scarcity due to climate change (range across 21 GCMs). This represents a higher upper-estimate than previous assessments because scenarios are constructed from a wider range of GCMs. A substantial proportion of the uncertainty in the global-scale effect of climate change on water scarcity is due to uncertainty in the estimates for South Asia and East Asia. Sensitivity to the WCI and WSI thresholds that define water scarcity can be comparable to the sensitivity to climate change pattern. More of the world will see an increase in exposure to water scarcity than a decrease due to climate change but this is not consistent across all climate change patterns. Additionally, investigation of the effects of a set of prescribed global mean temperature change scenarios show rapid increases in water scarcity due to climate change across many regions of the globe, up to 2°C, followed by stabilisation to 4°C
Recommended from our members
The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios
This paper presents a preliminary assessment of the relative effects of rate of climate change (four Representative Concentration Pathways - RCPs), assumed future population (five Shared Socio-economic Pathways - SSPs), and pattern of climate change (19 CMIP5 climate models) on regional and global exposure to water resources stress and river flooding. Uncertainty in projected future impacts of climate change on exposure to water stress and river flooding is dominated by uncertainty in the projected spatial and seasonal pattern of change in climate. There is little clear difference in impact between RCP2.6, RCP4.5 and RCP6.0 in 2050, and between RCP4.5 and RCP6.0 in 2080. Impacts under RCP8.5 are greater than under the other RCPs in 2050 and 2080. For a given RCP, there is a difference in the absolute numbers of people exposed to increased water resources stress or increased river flood frequency between the five SSPs. With the ‘middle-of-the-road’ SSP2, climate change by 2050 would increase exposure to water resources stress for between approximately 920 and 3400 million people under the highest RCP, and increase exposure to river flood risk for between 100 and 580 million people. Under RCP2.6, exposure to increased water scarcity would be reduced in 2050 by 22-24%, compared to impacts under the RCP8.5, and exposure to increased flood frequency would be reduced by around 16%. The implications of climate change for actual future losses and adaptation depend not only on the numbers of people exposed to changes in risk, but also on the qualitative characteristics of future worlds as described in the different SSPs. The difference in ‘actual’ impact between SSPs will therefore be greater than the differences in numbers of people exposed to impact
Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation
Development, testing and example applications of the pattern-scaling approach for generating future climate change projections are reported here, with a focus on a particular software application called “ClimGen”. A number of innovations have been implemented, including using exponential and logistic functions of global-mean temperature to represent changes in local precipitation and cloud cover, and interpolation from climate model grids to a finer grid while taking into account land-sea contrasts in the climate change patterns. Of particular significance is a new approach for incorporating changes in the inter-annual variability of monthly precipitation simulated by climate models. This is achieved by diagnosing simulated changes in the shape of the gamma distribution of monthly precipitation totals, applying the pattern-scaling approach to estimate changes in the shape parameter under a future scenario, and then perturbing sequences of observed precipitation anomalies so that their distribution changes according to the projected change in the shape parameter. The approach cannot represent changes to the structure of climate timeseries (e.g. changed autocorrelation or teleconnection patterns) were they to occur, but is shown here to be more successful at representing changes in low precipitation extremes than previous pattern-scaling methods
Recommended from our members
Global and regional impacts of climate change at different levels of global temperature increase
The assessment of the impacts of climate change at different levels of global warming helps inform national and international policy discussion around mitigation targets. This paper provides consistent estimates of global and regional impacts and risks at increases in global mean temperature up to 5 °C above pre-industrial levels, for over 30 indicators representing temperature extremes and heatwaves, hydrological change, floods and droughts and proxies for impacts on crop yields. At the global scale, all the impacts that could plausibly be either adverse or beneficial are adverse, and impacts and risks increase with temperature change. For example, the global average chance of a major heatwave increases from 5% in 1981–2010 to 28% at 1.5 °C and 92% at 4 °C, of an agricultural drought increases from 9 to 24% at 1.5 °C and 61% at 4 °C, and of the 50-year return period river flood increases from 2 to 2.4% at 1.5 °C and 5.4% at 4 °C. The chance of a damaging hot spell for maize increases from 5 to 50% at 4 °C, whilst the chance for rice rises from 27 to 46%. There is considerable uncertainty around these central estimates, and impacts and risks vary between regions. Some impacts—for example heatwaves—increase rapidly as temperature increases, whilst others show more linear responses. The paper presents estimates of the risk of impacts exceeding specific targets and demonstrates that these estimates are sensitive to the thresholds used
The absence of an auditory-visual attentional blink is not due to echoic memory.
Als binnen een halve seconde twee visuele items in een serieel aangeboden stroom moeten worden geselecteerd, is de prestatie voor het tweede item vaak relatief slecht (er treedt een attentional blink op); wanneer het eerste echter item auditief wordt aangeboden, verdwijnt de blink meestal. We hebben aangetoond dat dit laatste niet wordt veroorzaakt doordat proefpersonen hun echoïsch geheugen gebruiken om de verwerking van het auditieve item uit te stellen tot na het einde van de visuele stroom
Recommended from our members
Scenarios as the basis for assessment of mitigation and adaptation
The possibilities and need for adaptation and mitigation depends on uncertain future developments with respect to socio-economic factors and the climate system. Scenarios are used to explore the impacts of different strategies under uncertainty. In this chapter, some scenarios are presented that are used in the ADAM project for this purpose. One scenario explores developments with no mitigation, and thus with high temperature increase and high reliance on adaptation (leading to 4oC increase by 2100 compared to pre-industrial levels). A second scenario explores an ambitious mitigation strategy (leading to 2oC increase by 2100 compared to pre-industrial levels). In the latter scenario, stringent mitigation strategies effectively reduces the risks of climate change, but based on uncertainties in the climate system a temperature increase of 3oC or more cannot be excluded. The analysis shows that, in many cases, adaptation and mitigation are not trade-offs but supplements. For example, the number of people exposed to increased water resource stress due to climate change can be substantially reduced in the mitigation scenario, but even then adaptation will be required for the remaining large numbers of people exposed to increased stress. Another example is sea level rise, for which adaptation is more cost-effective than mitigation, but mitigation can help reduce damages and the cost of adaptation. For agriculture, finally, only the scenario based on a combination of adaptation and mitigation is able to avoid serious climate change impacts
Integrated cross-domain object storage in working memory: Evidence from a verbal-spatial memory task
Working-memory theories often include domain-specific verbal and visual stores (e.g., the phonological and visuospatial buffers of Baddeley, 1986), and some also posit more general stores thought to be capable of holding verbal or visuospatial materials (Baddeley, 2000; Cowan, 2005). However, it is currently unclear which type of store is primarily responsible for maintaining objects that include components from multiple domains. In these studies, a spatial array of letters was followed by a single probe identical to an item in the array or differing systematically in spatial location, letter identity, or their combination. Concurrent verbal rehearsal suppression impaired memory in each of these trial types in a task that required participants to remember verbal-spatial binding, but did not impair memory for spatial locations if the task did not require verbal-spatial binding for a correct response. Thus, spatial information might be stored differently when it must be bound to verbal information. This suggests that a cross-domain store such as the episodic buffer of Baddeley (2000) or the focus of attention of Cowan (2001) might be used for integrated object storage, rather than the maintenance of associations between features stored in separate domain-specific buffers
Global-scale climate impact functions: the relationship between climate forcing and impact
Although there is a strong policy interest in the impacts of climate change corresponding to different degrees of climate change, there is so far little consistent empirical evidence of the relationship between climate forcing and impact. This is because the vast majority of impact assessments use emissions-based scenarios with associated socio-economic assumptions, and it is not feasible to infer impacts at other temperature changes by interpolation. This paper presents an assessment of the global-scale impacts of climate change in 2050 corresponding to defined increases in global mean temperature, using spatially-explicit impacts models representing impacts in the water resources, river flooding, coastal, agriculture, ecosystem and built environment sectors. Pattern-scaling is used to construct climate scenarios associated with specific changes in global mean surface temperature, and a relationship between temperature and sea level used to construct sea level rise scenarios. Climate scenarios are constructed from 21 climate models to give an indication of the uncertainty between forcing and response. The analysis shows that there is considerable uncertainty in the impacts associated with a given increase in global mean temperature, due largely to uncertainty in the projected regional change in precipitation. This has important policy implications. There is evidence for some sectors of a non-linear relationship between global mean temperature change and impact, due to the changing relative importance of temperature and precipitation change. In the socio-economic sectors considered here, the relationships are reasonably consistent between socio-economic scenarios if impacts are expressed in proportional terms, but there can be large differences in absolute terms. There are a number of caveats with the approach, including the use of pattern-scaling to construct scenarios, the use of one impacts model per sector, and the sensitivity of the shape of the relationships between forcing and response to the definition of the impact indicator
Recommended from our members
The impacts avoided with a 1.5 °C climate target: a global and regional assessment
The 2015 Paris Agreement commits countries to pursue efforts to limit the increase in global mean temperature to 1.5 °C above pre-industrial levels. We assess the consequences of achieving this target in 2100 for the impacts that are avoided, using several indicators of impact (exposure to drought, river flooding, heat waves and demands for heating and cooling energy). The proportion of impacts that are avoided is not simply equal to the proportional reduction in temperature. At the global scale, the median proportion of projected impacts avoided by the 1.5 °C target relative to a rise of 4 °C ranges between 62 and 95% across sectors: the greatest reduction is for heat wave impacts. The 1.5 °C target results in impacts that would be between 27 and 62% lower than with the 2 °C target. For each indicator, there are differences in the proportions of impacts avoided between regions depending on exposure and the regional changes in climate (particularly precipitation). Uncertainty in the proportion of impacts that are avoided for a specific sector depends on the range in the shape of the relationship between global temperature change and impact, and this varies between sectors
- …
