997 research outputs found

    Adiabatic entanglement transport in Rydberg aggregates

    Full text link
    We consider the interplay between excitonic and atomic motion in a regular, flexible chain of Rydberg atoms, extending our recent results on entanglement transport in Rydberg chains [W\"uster et al., Phys.Rev.Lett 105 053004 (2010)]. In such a Rydberg chain, similar to molecular aggregates, an electronic excitation is delocalised due to long range dipole-dipole interactions among the atoms. The transport of an exciton that is initially trapped by a chain dislocation is strongly coupled to nuclear dynamics, forming a localised pulse of combined excitation and displacement. This pulse transfers entanglement between dislocated atoms adiabatically along the chain. Details about the interaction and the preparation of the initial state are discussed. We also present evidence that the quantum dynamics of this complex many-body problem can be accurately described by selected quantum-classical methods, which greatly simplify investigations of excitation transport in flexible chains

    Boosting up quantum key distribution by learning statistics of practical single photon sources

    Full text link
    We propose a simple quantum-key-distribution (QKD) scheme for practical single photon sources (SPSs), which works even with a moderate suppression of the second-order correlation g(2)g^{(2)} of the source. The scheme utilizes a passive preparation of a decoy state by monitoring a fraction of the signal via an additional beam splitter and a detector at the sender's side to monitor photon number splitting attacks. We show that the achievable distance increases with the precision with which the sub-Poissonian tendency is confirmed in higher photon number distribution of the source, rather than with actual suppression of the multi-photon emission events. We present an example of the secure key generation rate in the case of a poor SPS with g(2)=0.19g^{(2)} = 0.19, in which no secure key is produced with the conventional QKD scheme, and show that learning the photon-number distribution up to several numbers is sufficient for achieving almost the same achievable distance as that of an ideal SPS.Comment: 11 pages, 3 figures; published version in New J. Phy

    Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling

    Get PDF
    High-bit-rate nanocavity-based single photon sources in the 1,550-nm telecom band are challenges facing the development of fibre-based long-haul quantum communication networks. Here we report a very fast single photon source in the 1,550-nm telecom band, which is achieved by a large Purcell enhancement that results from the coupling of a single InAs quantum dot and an InP photonic crystal nanocavity. At a resonance, the spontaneous emission rate was enhanced by a factor of 5 resulting a record fast emission lifetime of 0.2 ns at 1,550 nm. We also demonstrate that this emission exhibits an enhanced anti-bunching dip. This is the first realization of nanocavity-enhanced single photon emitters in the 1,550-nm telecom band. This coupled quantum dot cavity system in the telecom band thus provides a bright high-bit-rate non-classical single photon source that offers appealing novel opportunities for the development of a long-haul quantum telecommunication system via optical fibres.Comment: 16 pages, 4 figure

    Non-resonant dot-cavity coupling and its applications in resonant quantum dot spectroscopy

    Full text link
    We present experimental investigations on the non-resonant dot-cavity coupling of a single quantum dot inside a micro-pillar where the dot has been resonantly excited in the s-shell, thereby avoiding the generation of additional charges in the QD and its surrounding. As a direct proof of the pure single dot-cavity system, strong photon anti-bunching is consistently observed in the autocorrelation functions of the QD and the mode emission, as well as in the cross-correlation function between the dot and mode signals. Strong Stokes and anti-Stokes-like emission is observed for energetic QD-mode detunings of up to ~100 times the QD linewidth. Furthermore, we demonstrate that non-resonant dot-cavity coupling can be utilized to directly monitor and study relevant QD s-shell properties like fine-structure splittings, emission saturation and power broadening, as well as photon statistics with negligible background contributions. Our results open a new perspective on the understanding and implementation of dot-cavity systems for single-photon sources, single and multiple quantum dot lasers, semiconductor cavity quantum electrodynamics, and their implementation, e.g. in quantum information technology.Comment: 17 pages, 4 figure

    On-demand semiconductor single-photon source with near-unity indistinguishability

    Full text link
    Single photon sources based on semiconductor quantum dots offer distinct advantages for quantum information, including a scalable solid-state platform, ultrabrightness, and interconnectivity with matter qubits. A key prerequisite for their use in optical quantum computing and solid-state networks is a high level of efficiency and indistinguishability. Pulsed resonance fluorescence (RF) has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing. Here, we generate pulsed RF single photons on demand from a single, microcavity-embedded quantum dot under s-shell excitation with 3-ps laser pulses. The pi-pulse excited RF photons have less than 0.3% background contributions and a vanishing two-photon emission probability. Non-postselective Hong-Ou-Mandel interference between two successively emitted photons is observed with a visibility of 0.97(2), comparable to trapped atoms and ions. Two single photons are further used to implement a high-fidelity quantum controlled-NOT gate.Comment: 11 pages, 11 figure

    Case report: A Stauffer’s syndrome variant associated with renal cell carcinoma and thrombocytopenia

    Get PDF
    Stauffer’s syndrome is a rare paraneoplastic manifestation of renal cell carcinoma which is characterized by elevated alkaline phosphatase, erythrocyte  sedimentation rate, -2-globulin, -glutamyl transferase,  thrombocytosis, prolongation of prothrombin time and hepatosplenomegaly, in the absence of hepatic  metastasis and jaundice. In this case report, we report a patient who was admitted with fever, fatigue,  abdominal pain, weight loss and pruritus in whom renal cell carcinoma was incidentally found in the right kidney during an initial workup.KEYWORDS: Cholestasis; Paraneoplastic syndrome; RCC; Stauffer’s syndrome; Thrombocytopeni

    Design, development and deployment of a hand/wrist exoskeleton for home-based rehabilitation after stroke - SCRIPT project

    Get PDF
    YesChanges in world-wide population trends have provided new demands for new technologies in areas such as care and rehabilitation. Recent developments in the the field of robotics for neurorehabilitation have shown a range of evidence regarding usefulness of these technologies as a tool to augment traditional physiotherapy. Part of the appeal for these technologies is the possibility to place a rehabilitative tool in one’s home, providing a chance for more frequent and accessible technologies for empowering individuals to be in charge of their therapy. Objective: this manuscript introduces the Supervised Care and Rehabilitation Involving Personal Tele-robotics (SCRIPT) project. The main goal is to demonstrate design and development steps involved in a complex intervention, while examining feasibility of using an instrumented orthotic device for home-based rehabilitation after stroke. Methods: the project uses a user-centred design methodology to develop a hand/wrist rehabilitation device for home-based therapy after stroke. The patient benefits from a dedicated user interface that allows them to receive feedback on exercise as well as communicating with the health-care professional. The health-care professional is able to use a dedicated interface to send/receive communications and remote-manage patient’s exercise routine using provided performance benchmarks. Patients were involved in a feasibility study (n=23) and were instructed to use the device and its interactive games for 180 min per week, around 30 min per day, for a period of 6 weeks, with a 2-months follow up. At the time of this study, only 12 of these patients have finished their 6 weeks trial plus 2 months follow up evaluation. Results: with the “use feasibility” as objective, our results indicate 2 patients dropping out due to technical difficulty or lack of personal interests to continue. Our frequency of use results indicate that on average, patients used the SCRIPT1 device around 14 min of self-administered therapy a day. The group average for the system usability scale was around 69% supporting system usability. Conclusions: based on the preliminary results, it is evident that stroke patients were able to use the system in their homes. An average of 14 min a day engagement mediated via three interactive games is promising, given the chronic stage of stroke. During the 2nd year of the project, 6 additional games with more functional relevance in their interaction have been designed to allow for a more variant context for interaction with the system, thus hoping to positively influence the exercise duration. The system usability was tested and provided supporting evidence for this parameter. Additional improvements to the system are planned based on formative feedback throughout the project and during the evaluations. These include a new orthosis that allows a more active control of the amount of assistance and resistance provided, thus aiming to provide a more challenging interaction.This work has been partially funded under Grant FP7-ICT-288698(SCRIPT) of the European Community Seventh Framework Programme

    Non-equilibrium universality in the dynamics of dissipative cold atomic gases

    Get PDF
    The theory of continuous phase transitions predicts the universal collective properties of a physical system near a critical point, which for instance manifest in characteristic power-law behaviours of physical observables. The well-established concept at or near equilibrium, universality, can also characterize the physics of systems out of equilibrium. The most fundamental instance of a genuine non-equilibrium phase transition is the directed percolation universality class, where a system switches from an absorbing inactive to a fluctuating active phase. Despite being known for several decades it has been challenging to find experimental systems that manifest this transition. Here we show theoretically that signatures of the directed percolation universality class can be observed in an atomic system with long range interactions. Moreover, we demonstrate that even mesoscopic ensembles — which are currently studied experimentally — are sufficient to observe traces of this non-equilibrium phase transition in one, two and three dimensions
    corecore