5,815 research outputs found
Symmetry classes for even-order tensors
The purpose of this article is to give a complete and general answer to the
recurrent problem in continuum mechanics of the determination of the number and
the type of symmetry classes of an even-order tensor space. This kind of
investigation was initiated for the space of elasticity tensors. Since then,
different authors solved this problem for other kinds of physics such as
photoelectricity, piezoelectricity, flexoelectricity, and strain-gradient
elasticity. All the aforementioned problems were treated by the same
computational method. Although being effective, this method suffers the
drawback not to provide general results. And, furthermore, its complexity
increases with the tensorial order. In the present contribution, we provide
general theorems that directly give the sought results for any even-order
constitutive tensor. As an illustration of this method, and for the first time,
the symmetry classes of all even-order tensors of Mindlin second
strain-gradient elasticity are provided.Comment: Mathematics and Mechanics of Complex Systems (2013) (Accepted
Analytical continuum mechanics \`a la Hamilton-Piola: least action principle for second gradient continua and capillary fluids
In this paper a stationary action principle is proven to hold for capillary
fluids, i.e. fluids for which the deformation energy has the form suggested,
starting from molecular arguments, for instance by Cahn and Hilliard. Remark
that these fluids are sometimes also called Korteweg-de Vries or Cahn-Allen. In
general continua whose deformation energy depend on the second gradient of
placement are called second gradient (or Piola-Toupin or Mindlin or
Green-Rivlin or Germain or second gradient) continua. In the present paper, a
material description for second gradient continua is formulated. A Lagrangian
action is introduced in both material and spatial description and the
corresponding Euler-Lagrange bulk and boundary conditions are found. These
conditions are formulated in terms of an objective deformation energy volume
density in two cases: when this energy is assumed to depend on either C and
grad C or on C^-1 and grad C^-1 ; where C is the Cauchy-Green deformation
tensor. When particularized to energies which characterize fluid materials, the
capillary fluid evolution conditions (see e.g. Casal or Seppecher for an
alternative deduction based on thermodynamic arguments) are recovered. A
version of Bernoulli law valid for capillary fluids is found and, in the
Appendix B, useful kinematic formulas for the present variational formulation
are proposed. Historical comments about Gabrio Piola's contribution to
continuum analytical mechanics are also presented. In this context the reader
is also referred to Capecchi and Ruta.Comment: 52 page
Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter
This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPEnsuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered
A transcriptome-driven analysis of epithelial brushings and bronchial biopsies to define asthma phenotypes in U-BIOPRED
RATIONALE AND OBJECTIVES: Asthma is a heterogeneous disease driven by diverse immunologic and inflammatory mechanisms. We used transcriptomic profiling of airway tissues to help define asthma phenotypes. METHODS: The transcriptome from bronchial biopsies and epithelial brushings of 107 moderate-to-severe asthmatics were annotated by gene-set variation analysis (GSVA) using 42 gene-signatures relevant to asthma, inflammation and immune function. Topological data analysis (TDA) of clinical and histological data was used to derive clusters and the nearest shrunken centroid algorithm used for signature refinement. RESULTS: 9 GSVA signatures expressed in bronchial biopsies and airway epithelial brushings distinguished two distinct asthma subtypes associated with high expression of T-helper type 2 (Th-2) cytokines and lack of corticosteroid response (Group 1 and Group 3). Group 1 had the highest submucosal eosinophils, high exhaled nitric oxide (FeNO) levels, exacerbation rates and oral corticosteroid (OCS) use whilst Group 3 patients showed the highest levels of sputum eosinophils and had a high BMI. In contrast, Group 2 and Group 4 patients had an 86% and 64% probability of having non-eosinophilic inflammation. Using machine-learning tools, we describe an inference scheme using the currently-available inflammatory biomarkers sputum eosinophilia and exhaled nitric oxide levels along with OCS use that could predict the subtypes of gene expression within bronchial biopsies and epithelial cells with good sensitivity and specificity. CONCLUSION: This analysis demonstrates the usefulness of a transcriptomic-driven approach to phenotyping that segments patients who may benefit the most from specific agents that target Th2-mediated inflammation and/or corticosteroid insensitivity
Studies of the Response of the Prototype CMS Hadron Calorimeter, Including Magnetic Field Effects, to Pion, Electron, and Muon Beams
We report on the response of a prototype CMS hadron calorimeter module to
charged particle beams of pions, muons, and electrons with momenta up to 375
GeV/c. The data were taken at the H2 and H4 beamlines at CERN in 1995 and 1996.
The prototype sampling calorimeter used copper absorber plates and scintillator
tiles with wavelength shifting fibers for readout. The effects of a magnetic
field of up to 3 Tesla on the response of the calorimeter to muons, electrons,
and pions are presented, and the effects of an upstream lead tungstate crystal
electromagnetic calorimeter on the linearity and energy resolution of the
combined calorimetric system to hadrons are evaluated. The results are compared
with Monte Carlo simulations and are used to optimize the choice of total
absorber depth, sampling frequency, and longitudinal readout segmentation.Comment: 89 pages, 41 figures, to be published in NIM, corresponding author: P
de Barbaro, [email protected]
Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up
Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
- …
