1,704 research outputs found
Implementasi Permendikbud Kurikulum 2013 dalam Pelajaran Bahasa Indonesia Smk Kelas X
Penelitian ini mengkaji mengenai implementasi Permendikbud Kurikulurn 2013 yang berisi aturan pelaksaanaan kurikulum 2013 dalam pelajaran bahasa Indonesia. Permendikbud yang rnenjadi bahan kajian adalah Permendikbud nomor 54 tahun 2013, nomor 64 tahun 2013, nomor 103 tahun 2014, dan nomor 104 tahun 2014. Penelitian ini dilaksanakan pada Guru Bahasa Indonesia Kelas X di SMKN 5 Mataram. Metode pengumpulan data dalam penelitian ini rnenggunakan purposive sampling dengan metode wawancara terstruktur dan analisis isi dokumen-dokumen yang relevan. Analisis data menggunakan model Miles dan Huberman, yaitu dimulai dengan reduksi data, yaitu pengumpulan data yang berlangsung selama penelitian sampai tahap pelaporan hasil penelitian selesai. Display data atau penyajian data berupa data deskriptif. Hasil penelitian rnengungkapkan bahwa Implernentasi Permendikbud tentang Kurikulurn 2013 pada pembelajaran Bahasaa Indonesia Kelas X di SMKN 5 Matararn pada Permendikbud Nomor 54 dan 64 tahun 2013 sudah sangat baik, Permendikbud nomor 103 dan Permendikbud nomor 104 baik
Dynamics of a tagged particle in the asymmetric exclusion process with the step initial condition
The one-dimensional totally asymmetric simple exclusion process (TASEP) is
considered. We study the time evolution property of a tagged particle in TASEP
with the step-type initial condition. Calculated is the multi-time joint
distribution function of its position. Using the relation of the dynamics of
TASEP to the Schur process, we show that the function is represented as the
Fredholm determinant. We also study the scaling limit. The universality of the
largest eigenvalue in the random matrix theory is realized in the limit. When
the hopping rates of all particles are the same, it is found that the joint
distribution function converges to that of the Airy process after the time at
which the particle begins to move. On the other hand, when there are several
particles with small hopping rate in front of a tagged particle, the limiting
process changes at a certain time from the Airy process to the process of the
largest eigenvalue in the Hermitian multi-matrix model with external sources.Comment: 48 pages, 8 figure
An Anisotropic Ballistic Deposition Model with Links to the Ulam Problem and the Tracy-Widom Distribution
We compute exactly the asymptotic distribution of scaled height in a
(1+1)--dimensional anisotropic ballistic deposition model by mapping it to the
Ulam problem of finding the longest nondecreasing subsequence in a random
sequence of integers. Using the known results for the Ulam problem, we show
that the scaled height in our model has the Tracy-Widom distribution appearing
in the theory of random matrices near the edges of the spectrum. Our result
supports the hypothesis that various growth models in dimensions that
belong to the Kardar-Parisi-Zhang universality class perhaps all share the same
universal Tracy-Widom distribution for the suitably scaled height variables.Comment: 5 pages Revtex, 3 .eps figures included, new references adde
Genetic Classification of Populations using Supervised Learning
There are many instances in genetics in which we wish to determine whether
two candidate populations are distinguishable on the basis of their genetic
structure. Examples include populations which are geographically separated,
case--control studies and quality control (when participants in a study have
been genotyped at different laboratories). This latter application is of
particular importance in the era of large scale genome wide association
studies, when collections of individuals genotyped at different locations are
being merged to provide increased power. The traditional method for detecting
structure within a population is some form of exploratory technique such as
principal components analysis. Such methods, which do not utilise our prior
knowledge of the membership of the candidate populations. are termed
\emph{unsupervised}. Supervised methods, on the other hand are able to utilise
this prior knowledge when it is available.
In this paper we demonstrate that in such cases modern supervised approaches
are a more appropriate tool for detecting genetic differences between
populations. We apply two such methods, (neural networks and support vector
machines) to the classification of three populations (two from Scotland and one
from Bulgaria). The sensitivity exhibited by both these methods is considerably
higher than that attained by principal components analysis and in fact
comfortably exceeds a recently conjectured theoretical limit on the sensitivity
of unsupervised methods. In particular, our methods can distinguish between the
two Scottish populations, where principal components analysis cannot. We
suggest, on the basis of our results that a supervised learning approach should
be the method of choice when classifying individuals into pre-defined
populations, particularly in quality control for large scale genome wide
association studies.Comment: Accepted PLOS On
Extremal statistics of curved growing interfaces in 1+1 dimensions
We study the joint probability distribution function (pdf) of the maximum M
of the height and its position X_M of a curved growing interface belonging to
the universality class described by the Kardar-Parisi-Zhang equation in 1+1
dimensions. We obtain exact results for the closely related problem of p
non-intersecting Brownian bridges where we compute the joint pdf P_p(M,\tau_M)
where \tau_M is there the time at which the maximal height M is reached. Our
analytical results, in the limit p \to \infty, become exact for the interface
problem in the growth regime. We show that our results, for moderate values of
p \sim 10 describe accurately our numerical data of a prototype of these
systems, the polynuclear growth model in droplet geometry. We also discuss
applications of our results to the ground state configuration of the directed
polymer in a random potential with one fixed endpoint.Comment: 6 pages, 4 figures. Published version, to appear in Europhysics
Letters. New results added for non-intersecting excursion
Methane activation and exchange by titanium-carbon multiple bonds
We demonstrate that a titanium-carbon multiple bond, specifically an alkylidyne ligand in the transient complex, (PNP)Ti≡C^(t)Bu (A) (PNP^− = N[2-P(CHMe_2)_(2)-4-methylphenyl]_2), can cleanly activate methane at room temperature with moderately elevated pressures to form (PNP)Ti=CHtBu(CH_3). Isotopic labeling and theoretical studies suggest that the alkylidene and methyl hydrogens exchange, either via tautomerization invoking a
methylidene complex, (PNP)Ti=CH_(2)(CH_(2)^(t)Bu), or by forming the methane adduct (PNP)Ti≡C^(t)Bu(CH_4). The thermal, fluxional and chemical behavior of (PNP)Ti=CH^(t)Bu(CH_3) is also presented in this study
Spectra of random Hermitian matrices with a small-rank external source: supercritical and subcritical regimes
Random Hermitian matrices with a source term arise, for instance, in the
study of non-intersecting Brownian walkers \cite{Adler:2009a, Daems:2007} and
sample covariance matrices \cite{Baik:2005}.
We consider the case when the external source matrix has two
distinct real eigenvalues: with multiplicity and zero with multiplicity
. The source is small in the sense that is finite or , for . For a Gaussian potential, P\'ech\'e
\cite{Peche:2006} showed that for sufficiently small (the subcritical
regime) the external source has no leading-order effect on the eigenvalues,
while for sufficiently large (the supercritical regime) eigenvalues
exit the bulk of the spectrum and behave as the eigenvalues of
Gaussian unitary ensemble (GUE). We establish the universality of these results
for a general class of analytic potentials in the supercritical and subcritical
regimes.Comment: 41 pages, 4 figure
Non-intersecting Brownian walkers and Yang-Mills theory on the sphere
We study a system of N non-intersecting Brownian motions on a line segment
[0,L] with periodic, absorbing and reflecting boundary conditions. We show that
the normalized reunion probabilities of these Brownian motions in the three
models can be mapped to the partition function of two-dimensional continuum
Yang-Mills theory on a sphere respectively with gauge groups U(N), Sp(2N) and
SO(2N). Consequently, we show that in each of these Brownian motion models, as
one varies the system size L, a third order phase transition occurs at a
critical value L=L_c(N)\sim \sqrt{N} in the large N limit. Close to the
critical point, the reunion probability, properly centered and scaled, is
identical to the Tracy-Widom distribution describing the probability
distribution of the largest eigenvalue of a random matrix. For the periodic
case we obtain the Tracy-Widom distribution corresponding to the GUE random
matrices, while for the absorbing and reflecting cases we get the Tracy-Widom
distribution corresponding to GOE random matrices. In the absorbing case, the
reunion probability is also identified as the maximal height of N
non-intersecting Brownian excursions ("watermelons" with a wall) whose
distribution in the asymptotic scaling limit is then described by GOE
Tracy-Widom law. In addition, large deviation formulas for the maximum height
are also computed.Comment: 37 pages, 4 figures, revised and published version. A typo has been
corrected in Eq. (10
- …
