3,209 research outputs found

    Time-dependent angularly averaged inverse transport

    Full text link
    This paper concerns the reconstruction of the absorption and scattering parameters in a time-dependent linear transport equation from knowledge of angularly averaged measurements performed at the boundary of a domain of interest. We show that the absorption coefficient and the spatial component of the scattering coefficient are uniquely determined by such measurements. We obtain stability results on the reconstruction of the absorption and scattering parameters with respect to the measured albedo operator. The stability results are obtained by a precise decomposition of the measurements into components with different singular behavior in the time domain

    Radiation- and Phonon-Bottleneck-Induced Tunneling in the Fe8 Single-Molecule Magnet

    Full text link
    We measure magnetization changes in a single crystal of the single-molecule magnet Fe8 when exposed to intense, short (<20 μ\mus) pulses of microwave radiation resonant with the m = 10 to 9 transition. We find that radiation induces a phonon bottleneck in the system with a time scale of ~5 μ\mus. The phonon bottleneck, in turn, drives the spin dynamics, allowing observation of thermally assisted resonant tunneling between spin states at the 100-ns time scale. Detailed numerical simulations quantitatively reproduce the data and yield a spin-phonon relaxation time of T1 ~ 40 ns.Comment: 6 RevTeX pages, including 4 EPS figures, version accepted for publicatio

    Electrostatic tuning of magnetism at the conducting (111) (La0.3_{0.3}Sr0.7_{0.7})(Al0.65_{0.65}Ta0.35_{0.35})/SrTiO3_3 interface

    Full text link
    We present measurements of the low temperature electrical transport properties of the two dimensional carrier gas that forms at the interface of (111)(111) (La0.3_{0.3}Sr0.7_{0.7})(Al0.65_{0.65}Ta0.35_{0.35})/SrTiO3_3 (LSAT/STO) as a function of applied back gate voltage, VgV_g. As is found in (111) LaAlO3_3/SrTiO3_3 interfaces, the low-field Hall coefficient is electron-like, but shows a sharp reduction in magnitude below VgV_g \sim 20 V, indicating the presence of hole-like carriers in the system. This same value of VgV_g correlates approximately with the gate voltage below which the magnetoresistance evolves from nonhysteretic to hysteretic behavior at millikelvin temperatures, signaling the onset of magnetic order in the system. We believe our results can provide insight into the mechanism of magnetism in SrTiO3_3 based systems.Comment: 5 pages, 3 figure

    Measurement of Magnetization Dynamics in Single-Molecule Magnets Induced by Pulsed Millimeter-Wave Radiation

    Full text link
    We describe an experiment aimed at measuring the spin dynamics of the Fe8 single-molecule magnet in the presence of pulsed microwave radiation. In earlier work, heating was observed after a 0.2-ms pulse of intense radiation, indicating that the spin system and the lattice were out of thermal equilibrium at millisecond time scale [Bal et al., Europhys. Lett. 71, 110 (2005)]. In the current work, an inductive pick-up loop is used to probe the photon-induced magnetization dynamics between only two levels of the spin system at much shorter time scales (from ns to us). The relaxation time for the magnetization, induced by a pulse of radiation, is found to be on the order of 10 us.Comment: 3 RevTeX pages, including 3 eps figures. The paper will appear in the Journal of Applied Physics as MMM'05 conference proceeding

    Coherent radiation by molecular magnets

    Full text link
    The possibility of coherent radiation by molecular magnets is investigated. It is shown that to realize the coherent radiation, it is necessary to couple the considered sample to a resonant electric circuit. A theory for describing this phenomenon is developed, based on a realistic microscopic Hamiltonian, including the Zeeman terms, single-site anisotropy, and dipole interactions. The role of hyperfine interactions between molecular and nuclear spins is studied. Numerical solutions of the spin evolution equations are presented.Comment: Latex file, 11 pages, 3 figure

    Non-equilibrium Magnetization Dynamics in the Fe_8 Single-Molecule Magnet Induced by High-Intensity Microwave Radiation

    Full text link
    Resonant microwave radiation applied to a single crystal of the molecular magnet Fe_8 induces dramatic changes in the sample's magnetization. Transitions between excited states are found even though at the nominal system temperature these levels have negligible population. We find evidence that the sample heats significantly when the resonance condition is met. In addition, heating is observed after a short pulse of intense radiation has been turned off, indicating that the spin system is out of equilibrium with the lattice.Comment: Version to appear in Europhysics Letters. Minor changes and updated reference

    Experimental Upper Bound on Superradiance Emission from Mn12 Acetate

    Full text link
    We used a Josephson junction as a radiation detector to look for evidence of the emission of electromagnetic radiation during magnetization avalanches in a crystal assembly of Mn_12-Acetate. The crystal assembly exhibits avalanches at several magnetic fields in the temperature range from 1.8 to 2.6 K with durations of the order of 1 ms. Although a recent study shows evidence of electromagnetic radiation bursts during these avalanches [J. Tejada, et al., Appl. Phys. Lett. {\bf 84}, 2373 (2004)], we were unable to detect any significant radiation at well-defined frequencies. A control experiment with external radiation pulses allows us to determine that the energy released as radiation during an avalanche is less than 1 part in 10^4 of the total energy released. In addition, our avalanche data indicates that the magnetization reversal process does not occur uniformly throughout the sample.Comment: 4 RevTeX pages, 3 eps figure

    Agrobiodiversity and Its Conservation in Nepal

    Full text link
    Nepal is a part of the world\u27s biodiversity hotspot and ranks the 49th in the world for biodiversity. Agrobiodiversity and its conservation status were studied through literature review, field survey, key informant survey and focus group discussion. Results of field implementation of some good practices and action research were also documented. Among 24,300 total species in the country, 28% are agricultural genetic resources (AGRs), termed as agrobiodiversity. Agrobiodiversity has six components (crops, forages, livestock, aquatic, insects and microorganisms) and four sub-components (domesticated, semi-domesticated, wild relatives and wild edible) in Nepal. Agrobiodiversity on each component exists at agroecosystem, species, variety/breed/biotype/race/strain, genotype and allele levels, within an altitude range from 60 to 5,000 masl. There are 12 agroecosystems supporting 1026 species under crop component, 510 under forage, 35 under livestock, 250 under the aquatic animal, 17 under aquatic plant, 3,500 under insect and 800 under microorganism. An estimated loss of agrobiodiversity is 40%, however, farmers have reported up to 100% loss of AGRs in some areas for a particular species. Conservation of agrobiodiversity has been initiated since 1986. Four strategies namely ex-situ, on-farm, in-situ and breeding have been adopted for conservation and sustainable utilization of AGRs. Eighty good practices including process, methods and actions for managing agrobiodiversity have been in practice and these practices come under five conservation components (sensitization, method and approach, accelerator, value and enabling environment). Within the country, 18,765 accessions of AGRs have been conserved in different kinds of banks. A total of 24,683 accessions of Nepalese crops, forages and microbes have been conserved in different International and foreign genebanks. Some collections are conserved as safety duplication and safety backup in different CGIARs\u27 banks and World Seed Vault, Korea. Two global databases (GENESYS and EURISCO) have maintained 19,200 Nepalese accessions. Geographical Information System, Climate Analog Tool and biotechnological tools have been applied for better managing AGRs. Many stakeholders need to further concentrate on the conservation and utilization of AGRs. Global marketing of some native AGRs is necessary for sustaining agriculture and attracting young generations as well as conserving them through use

    Digital printing of enzymes on textile substrates as functional materials

    Get PDF
    Recently, there have been significant developments in inkjet printing for applications in various fields such as medicine, biomaterials and sensors. In this research, enzymes like horseradish peroxidase (HRP) and glucose oxidase (GOx) were directly printed by inkjet printer onto flexible textile fabric in predefined patterns to produce a functional material. The functionality of the printed enzymes (bioink) was investigated by chemical reaction after printing fresh and stored bio-ink in a digital printer. The results indicated that these enzymes can be effectively printed individually or in combination, which retains their functionality after printing. Furthermore, HRP was coupled and printed with fluorescent group, the result confirmed that the printed enzyme was still active and retained its functionality despite the printing process. Hence, the digital printing technique can be used as a novel method for producing functional textiles for advanced applications in monitoring health and security
    corecore