1,794 research outputs found

    Phase separation of a driven granular gas in annular geometry

    Full text link
    This work investigates phase separation of a monodisperse gas of inelastically colliding hard disks confined in a two-dimensional annulus, the inner circle of which represents a "thermal wall". When described by granular hydrodynamic equations, the basic steady state of this system is an azimuthally symmetric state of increased particle density at the exterior circle of the annulus. When the inelastic energy loss is sufficiently large, hydrodynamics predicts spontaneous symmetry breaking of the annular state, analogous to the van der Waals-like phase separation phenomenon previously found in a driven granular gas in rectangular geometry. At a fixed aspect ratio of the annulus, the phase separation involves a "spinodal interval" of particle area fractions, where the gas has negative compressibility in the azimuthal direction. The heat conduction in the azimuthal direction tends to suppress the instability, as corroborated by a marginal stability analysis of the basic steady state with respect to small perturbations. To test and complement our theoretical predictions we performed event-driven molecular dynamics (MD) simulations of this system. We clearly identify the transition to phase separated states in the MD simulations, despite large fluctuations present, by measuring the probability distribution of the amplitude of the fundamental Fourier mode of the azimuthal spectrum of the particle density. We find that the instability region, predicted from hydrodynamics, is always located within the phase separation region observed in the MD simulations. This implies the presence of a binodal (coexistence) region, where the annular state is metastable. The phase separation persists when the driving and elastic walls are interchanged, and also when the elastic wall is replaced by weakly inelastic one.Comment: 9 pages, 10 figures, to be published in PR

    Thermal collapse of a granular gas under gravity

    Full text link
    Free cooling of a gas of inelastically colliding hard spheres represents a central paradigm of kinetic theory of granular gases. At zero gravity the temperature of a freely cooling homogeneous granular gas follows a power law in time. How does gravity, which brings inhomogeneity, affect the cooling? We combine molecular dynamics simulations, a numerical solution of hydrodynamic equations and an analytic theory to show that a granular gas cooling under gravity undergoes thermal collapse: it cools down to zero temperature and condenses on the bottom of the container in a finite time.Comment: 4 pages, 12 eps figures, to appear in PR

    Extinction of metastable stochastic populations

    Full text link
    We investigate extinction of a long-lived self-regulating stochastic population, caused by intrinsic (demographic) noise. Extinction typically occurs via one of two scenarios depending on whether the absorbing state n=0 is a repelling (scenario A) or attracting (scenario B) point of the deterministic rate equation. In scenario A the metastable stochastic population resides in the vicinity of an attracting fixed point next to the repelling point n=0. In scenario B there is an intermediate repelling point n=n_1 between the attracting point n=0 and another attracting point n=n_2 in the vicinity of which the metastable population resides. The crux of the theory is WKB method which assumes that the typical population size in the metastable state is large. Starting from the master equation, we calculate the quasi-stationary probability distribution of the population sizes and the (exponentially long) mean time to extinction for each of the two scenarios. When necessary, the WKB approximation is complemented (i) by a recursive solution of the quasi-stationary master equation at small n and (ii) by the van Kampen system-size expansion, valid near the fixed points of the deterministic rate equation. The theory yields both entropic barriers to extinction and pre-exponential factors, and holds for a general set of multi-step processes when detailed balance is broken. The results simplify considerably for single-step processes and near the characteristic bifurcations of scenarios A and B.Comment: 19 pages, 7 figure

    High-order numerical method for the nonlinear Helmholtz equation with material discontinuities in one space dimension

    Full text link
    The nonlinear Helmholtz equation (NLH) models the propagation of electromagnetic waves in Kerr media, and describes a range of important phenomena in nonlinear optics and in other areas. In our previous work, we developed a fourth order method for its numerical solution that involved an iterative solver based on freezing the nonlinearity. The method enabled a direct simulation of nonlinear self-focusing in the nonparaxial regime, and a quantitative prediction of backscattering. However, our simulations showed that there is a threshold value for the magnitude of the nonlinearity, above which the iterations diverge. In this study, we numerically solve the one-dimensional NLH using a Newton-type nonlinear solver. Because the Kerr nonlinearity contains absolute values of the field, the NLH has to be recast as a system of two real equations in order to apply Newton's method. Our numerical simulations show that Newton's method converges rapidly and, in contradistinction with the iterations based on freezing the nonlinearity, enables computations for very high levels of nonlinearity. In addition, we introduce a novel compact finite-volume fourth order discretization for the NLH with material discontinuities.The one-dimensional results of the current paper create a foundation for the analysis of multi-dimensional problems in the future.Comment: 47 pages, 8 figure

    On population extinction risk in the aftermath of a catastrophic event

    Full text link
    We investigate how a catastrophic event (modeled as a temporary fall of the reproduction rate) increases the extinction probability of an isolated self-regulated stochastic population. Using a variant of the Verhulst logistic model as an example, we combine the probability generating function technique with an eikonal approximation to evaluate the exponentially large increase in the extinction probability caused by the catastrophe. This quantity is given by the eikonal action computed over "the optimal path" (instanton) of an effective classical Hamiltonian system with a time-dependent Hamiltonian. For a general catastrophe the eikonal equations can be solved numerically. For simple models of catastrophic events analytic solutions can be obtained. One such solution becomes quite simple close to the bifurcation point of the Verhulst model. The eikonal results for the increase in the extinction probability caused by a catastrophe agree well with numerical solutions of the master equation.Comment: 11 pages, 11 figure

    Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas

    Full text link
    We employ Navier-Stokes granular hydrodynamics to investigate the long-time behavior of clustering instability in a freely cooling dilute granular gas in two dimensions. We find that, in circular containers, the homogeneous cooling state (HCS) of the gas loses its stability via a sub-critical pitchfork bifurcation. There are no time-independent solutions for the gas density in the supercritical region, and we present analytical and numerical evidence that the gas develops thermal collapse unarrested by heat diffusion. To get more insight, we switch to a simpler geometry of a narrow-sector-shaped container. Here the HCS loses its stability via a transcritical bifurcation. For some initial conditions a time-independent inhomogeneous density profile sets in, qualitatively similar to that previously found in a narrow-channel geometry. For other initial conditions, however, the dilute gas develops thermal collapse unarrested by heat diffusion. We determine the dynamic scalings of the flow close to collapse analytically and verify them in hydrodynamic simulations. The results of this work imply that, in dimension higher than one, Navier-Stokes hydrodynamics of a dilute granular gas is prone to finite-time density blowups. This provides a natural explanation to the formation of densely packed clusters of particles in a variety of initially dilute granular flows.Comment: 18 pages, 19 figure

    Experimental Study of Parametric Autoresonance in Faraday Waves

    Full text link
    The excitation of large amplitude nonlinear waves is achieved via parametric autoresonance of Faraday waves. We experimentally demonstrate that phase locking to low amplitude driving can generate persistent high-amplitude growth of nonlinear waves in a dissipative system. The experiments presented are in excellent agreement with theory.Comment: 4 pages, 4 eps figures, to appear in Phys. Rev. Let

    Attempted density blowup in a freely cooling dilute granular gas: hydrodynamics versus molecular dynamics

    Full text link
    It has been recently shown (Fouxon et al. 2007) that, in the framework of ideal granular hydrodynamics (IGHD), an initially smooth hydrodynamic flow of a granular gas can produce an infinite gas density in a finite time. Exact solutions that exhibit this property have been derived. Close to the singularity, the granular gas pressure is finite and almost constant. This work reports molecular dynamics (MD) simulations of a freely cooling gas of nearly elastically colliding hard disks, aimed at identifying the "attempted" density blowup regime. The initial conditions of the simulated flow mimic those of one particular solution of the IGHD equations that exhibits the density blowup. We measure the hydrodynamic fields in the MD simulations and compare them with predictions from the ideal theory. We find a remarkable quantitative agreement between the two over an extended time interval, proving the existence of the attempted blowup regime. As the attempted singularity is approached, the hydrodynamic fields, as observed in the MD simulations, deviate from the predictions of the ideal solution. To investigate the mechanism of breakdown of the ideal theory near the singularity, we extend the hydrodynamic theory by accounting separately for the gradient-dependent transport and for finite density corrections.Comment: 11 pages, 9 figures, accepted for publication on Physical Review

    Efficient Stochastic Simulations of Complex Reaction Networks on Surfaces

    Full text link
    Surfaces serve as highly efficient catalysts for a vast variety of chemical reactions. Typically, such surface reactions involve billions of molecules which diffuse and react over macroscopic areas. Therefore, stochastic fluctuations are negligible and the reaction rates can be evaluated using rate equations, which are based on the mean-field approximation. However, in case that the surface is partitioned into a large number of disconnected microscopic domains, the number of reactants in each domain becomes small and it strongly fluctuates. This is, in fact, the situation in the interstellar medium, where some crucial reactions take place on the surfaces of microscopic dust grains. In this case rate equations fail and the simulation of surface reactions requires stochastic methods such as the master equation. However, in the case of complex reaction networks, the master equation becomes infeasible because the number of equations proliferates exponentially. To solve this problem, we introduce a stochastic method based on moment equations. In this method the number of equations is dramatically reduced to just one equation for each reactive species and one equation for each reaction. Moreover, the equations can be easily constructed using a diagrammatic approach. We demonstrate the method for a set of astrophysically relevant networks of increasing complexity. It is expected to be applicable in many other contexts in which problems that exhibit analogous structure appear, such as surface catalysis in nanoscale systems, aerosol chemistry in stratospheric clouds and genetic networks in cells

    The Knudsen temperature jump and the Navier-Stokes hydrodynamics of granular gases driven by thermal walls

    Full text link
    Thermal wall is a convenient idealization of a rapidly vibrating plate used for vibrofluidization of granular materials. The objective of this work is to incorporate the Knudsen temperature jump at thermal wall in the Navier-Stokes hydrodynamic modeling of dilute granular gases of monodisperse particles that collide nearly elastically. The Knudsen temperature jump manifests itself as an additional term, proportional to the temperature gradient, in the boundary condition for the temperature. Up to a numerical pre-factor of order unity, this term is known from kinetic theory of elastic gases. We determine the previously unknown numerical pre-factor by measuring, in a series of molecular dynamics (MD) simulations, steady-state temperature profiles of a gas of elastically colliding hard disks, confined between two thermal walls kept at different temperatures, and comparing the results with the predictions of a hydrodynamic calculation employing the modified boundary condition. The modified boundary condition is then applied, without any adjustable parameters, to a hydrodynamic calculation of the temperature profile of a gas of inelastic hard disks driven by a thermal wall. We find the hydrodynamic prediction to be in very good agreement with MD simulations of the same system. The results of this work pave the way to a more accurate hydrodynamic modeling of driven granular gases.Comment: 7 pages, 3 figure
    corecore