2,744 research outputs found
A Novel, Contactless, Portable “Spot-Check” Device Accurately Measures Respiratory Rate
Respiratory rate (RR) is an important vital sign used in the assessment of acutely ill patients. It is also used as to predict serious deterioration in a patient's clinical condition. Convenient electronic devices exist for measurement of pulse, blood pressure, oxygen saturation and temperature. Although devices which measure RR exist, none has entered everyday clinical practice.
We developed a contactless portable respiratory rate monitor (CPRM) and evaluated the agreement in respiratory rate measurements between existing methods and our new device. The CPRM uses thermal anemometry to measure breath signals during inspiration and expiration.
RR data were collected from 52 healthy adult volunteers using respiratory inductance plethysmography (RIP) bands (established contact method), visual counting of chest movements (established non-contact method) and the CPRM (new method), simultaneously. Two differently shaped funnel attachments were evaluated for each volunteer.
Data showed good agreement between measurements from the CPRM and the gold standard RIP, with intra-class correlation coefficient (ICC): 0.836, mean difference 0.46 and 95% limits of agreement of -5.90 to 6.83. When separate air inlet funnels of the CPRM were analysed, stronger agreement was seen with an elliptical air inlet; ICC 0.908, mean difference 0.37 with 95% limits of agreement -4.35 to 5.08.
A contactless device for accurately and quickly measuring respiratory rate will be an important triage tool in the clinical assessment of patients. More testing is needed to explore the reasons for outlying measurements and to evaluate in the clinical setting
Efficient Computation of Dendritic Microstructures using Adaptive Mesh Refinement
We study dendritic microstructure evolution using an adaptive grid, finite
element method applied to a phase-field model. The computational complexity of
our algorithm, per unit time, scales linearly with system size, rather than the
quadratic variation given by standard uniform mesh schemes. Time-dependent
calculations in two dimensions are in good agreement with the predictions of
solvability theory, and can be extended to three dimensions and small
undercoolingsComment: typo in a parameter of Fig. 1; 4 pages, 4 postscript figures, in
LateX, (revtex
Phase Field Model for Three-Dimensional Dendritic Growth with Fluid Flow
We study the effect of fluid flow on three-dimensional (3D) dendrite growth
using a phase-field model on an adaptive finite element grid. In order to
simulate 3D fluid flow, we use an averaging method for the flow problem coupled
to the phase-field method and the Semi-Implicit Approximated Projection Method
(SIAPM). We describe a parallel implementation for the algorithm, using Charm++
FEM framework, and demonstrate its efficiency. We introduce an improved method
for extracting dendrite tip position and tip radius, facilitating accurate
comparison to theory. We benchmark our results for two-dimensional (2D)
dendrite growth with solvability theory and previous results, finding them to
be in good agreement. The physics of dendritic growth with fluid flow in three
dimensions is very different from that in two dimensions, and we discuss the
origin of this behavior
Crossover Scaling in Dendritic Evolution at Low Undercooling
We examine scaling in two-dimensional simulations of dendritic growth at low
undercooling, as well as in three-dimensional pivalic acid dendrites grown on
NASA's USMP-4 Isothermal Dendritic Growth Experiment. We report new results on
self-similar evolution in both the experiments and simulations. We find that
the time dependent scaling of our low undercooling simulations displays a
cross-over scaling from a regime different than that characterizing Laplacian
growth to steady-state growth
A coronary heart disease risk model for predicting the effect of potent antiretroviral therapy in HIV-1 infected men
Background Many HIV-infected patients on highly active antiretroviral therapy (HAART) experience metabolic complications including dyslipidaemia and insulin resistance, which may increase their coronary heart disease (CHD) risk. We developed a prognostic model for CHD tailored to the changes in risk factors observed in patients starting HAART. Methods Data from five cohort studies (British Regional Heart Study, Caerphilly and Speedwell Studies, Framingham Offspring Study, Whitehall II) on 13 100 men aged 40-70 and 114 443 years of follow up were used. CHD was defined as myocardial infarction or death from CHD. Model fit was assessed using the Akaike Information Criterion; generalizability across cohorts was examined using internal-external cross-validation. Results A parametric model based on the Gompertz distribution generalized best. Variables included in the model were systolic blood pressure, total cholesterol, high-density lipoprotein cholesterol, triglyceride, glucose, diabetes mellitus, body mass index and smoking status. Compared with patients not on HAART, the estimated CHD hazard ratio (HR) for patients on HAART was 1.46 (95% CI 1.15-1.86) for moderate and 2.48 (95% CI 1.76-3.51) for severe metabolic complications. Conclusions The change in the risk of CHD in HIV-infected men starting HAART can be estimated based on typical changes in risk factors, assuming that HRs estimated using data from non-infected men are applicable to HIV-infected men. Based on this model the risk of CHD is likely to increase, but increases may often be modest, and could be offset by lifestyle change
The Roles of Tidal Evolution and Evaporative Mass Loss in the Origin of CoRoT-7 b
CoRoT-7 b is the first confirmed rocky exoplanet, but, with an orbital
semi-major axis of 0.0172 AU, its origins may be unlike any rocky planet in our
solar system. In this study, we consider the roles of tidal evolution and
evaporative mass loss in CoRoT-7 b's history, which together have modified the
planet's mass and orbit. If CoRoT-7 b has always been a rocky body, evaporation
may have driven off almost half its original mass, but the mass loss may depend
sensitively on the extent of tidal decay of its orbit. As tides caused CoRoT-7
b's orbit to decay, they brought the planet closer to its host star, thereby
enhancing the mass loss rate. Such a large mass loss also suggests the
possibility that CoRoT-7 b began as a gas giant planet and had its original
atmosphere completely evaporated. In this case, we find that CoRoT-7 b's
original mass probably didn't exceed 200 Earth masses (about 2/3 of a Jupiter
mass). Tides raised on the host star by the planet may have significantly
reduced the orbital semi-major axis, perhaps causing the planet to migrate
through mean-motion resonances with the other planet in the system, CoRoT-7 c.
The coupling between tidal evolution and mass loss may be important not only
for CoRoT-7 b but also for other close-in exoplanets, and future studies of
mass loss and orbital evolution may provide insight into the origin and fate of
close-in planets, both rocky and gaseous.Comment: Accepted for publication by MNRAS on 2010 May
Serum prolactin as a biomarker for the study of intracerebral dopamine effect in adult patients with phenylketonuria: a cross-sectional monocentric study
BACKGROUND: It has been previously postulated that high phenylalanine (Phe) might disturb intracerebral dopamine production, which is the main regulator of prolactin secretion in the pituitary gland. Previously, various associations between Phe and hyperprolactinemia were revealed in studies performed in phenylketonuria (PKU) children and adolescents. The aim of the present study was to clarify whether any relation between serum phenylalanine and prolactin levels can be found in adult PKU patients. PATIENTS AND METHODS: We conducted a cross-sectional, monocentric study including 158 adult patients (male n = 68, female n = 90) with PKU. All patients were diagnosed during newborn screening and were treated since birth. Serum Phe, tyrosine (Tyr), prolactin (PRL), and thyroid-stimulating hormone (TSH) levels were measured, and Phe/Tyr ratio was calculated. Males and females were analyzed separately because the serum prolactin level is gender-dependent. RESULTS: No significant correlations were found between serum phenylalanine, tyrosine, or the Phe/Tyr ratio and serum prolactin level either in the male or in the female group. CONCLUSIONS: In treated adult PKU patients, the serum prolactin level may not be significantly influenced by Phe or Tyr serum levels
Response to comment on 'Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity'
Lambert et al. question our retrospective and holistic epidemiological assessment of the role of chytridiomycosis in amphibian declines. Their alternative assessment is narrow and provides an incomplete evaluation of evidence. Adopting this approach limits understanding of infectious disease impacts and hampers conservation efforts. We reaffirm that our study provides unambiguous evidence that chytridiomycosis has affected at least 501 amphibian species
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
Gender Differences in Russian Colour Naming
In the present study we explored Russian colour naming in a web-based psycholinguistic experiment
(http://www.colournaming.com). Colour singletons representing the Munsell Color Solid (N=600 in total) were presented on a computer monitor and named using an unconstrained colour-naming method. Respondents were
Russian speakers (N=713). For gender-split equal-size samples (NF=333, NM=333) we estimated and compared (i)
location of centroids of 12 Russian basic colour terms (BCTs); (ii) the number of words in colour descriptors; (iii) occurrences of BCTs most frequent non-BCTs. We found a close correspondence between females’ and males’
BCT centroids. Among individual BCTs, the highest inter-gender agreement was for seryj ‘grey’ and goluboj
‘light blue’, while the lowest was for sinij ‘dark blue’ and krasnyj ‘red’. Females revealed a significantly richer repertory of distinct colour descriptors, with great variety of monolexemic non-BCTs and “fancy” colour names; in comparison, males offered relatively more BCTs or their compounds. Along with these measures, we gauged
denotata of most frequent CTs, reflected by linguistic segmentation of colour space, by employing a synthetic
observer trained by gender-specific responses. This psycholinguistic representation revealed females’ more
refined linguistic segmentation, compared to males, with higher linguistic density predominantly along the redgreen axis of colour space
- …
