401 research outputs found
Quantum key distribution using gaussian-modulated coherent states
Quantum continuous variables are being explored as an alternative means to
implement quantum key distribution, which is usually based on single photon
counting. The former approach is potentially advantageous because it should
enable higher key distribution rates. Here we propose and experimentally
demonstrate a quantum key distribution protocol based on the transmission of
gaussian-modulated coherent states (consisting of laser pulses containing a few
hundred photons) and shot-noise-limited homodyne detection; squeezed or
entangled beams are not required. Complete secret key extraction is achieved
using a reverse reconciliation technique followed by privacy amplification. The
reverse reconciliation technique is in principle secure for any value of the
line transmission, against gaussian individual attacks based on entanglement
and quantum memories. Our table-top experiment yields a net key transmission
rate of about 1.7 megabits per second for a loss-free line, and 75 kilobits per
second for a line with losses of 3.1 dB. We anticipate that the scheme should
remain effective for lines with higher losses, particularly because the present
limitations are essentially technical, so that significant margin for
improvement is available on both the hardware and software.Comment: 8 pages, 4 figure
On the equivalence of pairing correlations and intrinsic vortical currents in rotating nuclei
The present paper establishes a link between pairing correlations in rotating
nuclei and collective vortical modes in the intrinsic frame. We show that the
latter can be embodied by a simple S-type coupling a la Chandrasekhar between
rotational and intrinsic vortical collective modes. This results from a
comparison between the solutions of microscopic calculations within the HFB and
the HF Routhian formalisms. The HF Routhian solutions are constrained to have
the same Kelvin circulation expectation value as the HFB ones. It is shown in
several mass regions, pairing regimes, and for various spin values that this
procedure yields moments of inertia, angular velocities, and current
distributions which are very similar within both formalisms. We finally present
perspectives for further studies.Comment: 8 pages, 4 figures, submitted to Phys. Rev.
Reversibility of continuous-variable quantum cloning
We analyze a reversibility of optimal Gaussian quantum cloning of a
coherent state using only local operations on the clones and classical
communication between them and propose a feasible experimental test of this
feature. Performing Bell-type homodyne measurement on one clone and anti-clone,
an arbitrary unknown input state (not only a coherent state) can be restored in
the other clone by applying appropriate local unitary displacement operation.
We generalize this concept to a partial LOCC reversal of the cloning and we
show that this procedure converts the symmetric cloner to an asymmetric cloner.
Further, we discuss a distributed LOCC reversal in optimal Gaussian
cloning of coherent states which transforms it to optimal cloning for
. Assuming the quantum cloning as a possible eavesdropping attack on
quantum communication link, the reversibility can be utilized to improve the
security of the link even after the attack.Comment: 7 pages, 5 figure
Direct generation of photon triplets using cascaded photon-pair sources
Non-classical states of light, such as entangled photon pairs and number
states, are essential for fundamental tests of quantum mechanics and optical
quantum technologies. The most widespread technique for creating these quantum
resources is the spontaneous parametric down-conversion (SPDC) of laser light
into photon pairs. Conservation of energy and momentum in this process, known
as phase-matching, gives rise to strong correlations which are used to produce
two-photon entanglement in various degrees of freedom. It has been a
longstanding goal of the quantum optics community to realise a source that can
produce analogous correlations in photon triplets, but of the many approaches
considered, none have been technically feasible. In this paper we report the
observation of photon triplets generated by cascaded down-conversion. Here each
triplet originates from a single pump photon, and therefore quantum
correlations will extend over all three photons in a way not achievable with
independently created photon pairs. We expect our photon-triplet source to open
up new avenues of quantum optics and become an important tool in quantum
technologies. Our source will allow experimental interrogation of novel quantum
correlations, the post-selection free generation of tripartite entanglement
without post- selection and the generation of heralded entangled-photon pairs
suitable for linear optical quantum computing. Two of the triplet photons have
a wavelength matched for optimal transmission in optical fibres, ideally suited
for three-party quantum communication. Furthermore, our results open
interesting regimes of non-linear optics, as we observe spontaneous
down-conversion pumped by single photons, an interaction also highly relevant
to optical quantum computing.Comment: 7 pages, 3 figures, 1 table; accepted by Natur
Soliton back-action evading measurement using spectral filtering
We report on a back-action evading (BAE) measurement of the photon number of
fiber optical solitons operating in the quantum regime. We employ a novel
detection scheme based on spectral filtering of colliding optical solitons. The
measurements of the BAE criteria demonstrate significant quantum state
preparation and transfer of the input signal to the signal and probe outputs
exiting the apparatus, displaying the quantum-nondemolition (QND) behavior of
the experiment.Comment: 5 pages, 5 figure
PT-symmetric Solutions of Schrodinger Equation with position-dependent mass via Point Canonical Transformation
PT-symmetric solutions of Schrodinger equation are obtained for the Scarf and
generalized harmonic oscillator potentials with the position-dependent mass. A
general point canonical transformation is applied by using a free parameter.
Three different forms of mass distributions are used. A set of the energy
eigenvalues of the bound states and corresponding wave functions for target
potentials are obtained as a function of the free parameter.Comment: 13 page
Scalable multimode entanglement based on efficient squeezing of propagation eigenmodes
Continuous-variable encoding of quantum information in the optical domain has
recently yielded large temporal and spectral entangled states instrumental for
quantum computing and quantum communication. We introduce a protocol for the
generation of spatial multipartite entanglement based on phase-matching of a
propagation eigenmode in a monolithic photonic device: the array of quadratic
nonlinear waveguides. We theoretically demonstrate in the spontaneous
parametric downconversion regime the generation of large multipartite entangled
states useful for multimode quantum networks. Our protocol is remarkably simple
and robust as it does not rely on specific values of coupling, nonlinearity or
length of the sample.Comment: 8 pages, 5 figures, title modified and new results added. Accepted
for publication in Physical Review Researc
Search for CP Violation in the Decay Z -> b (b bar) g
About three million hadronic decays of the Z collected by ALEPH in the years
1991-1994 are used to search for anomalous CP violation beyond the Standard
Model in the decay Z -> b \bar{b} g. The study is performed by analyzing
angular correlations between the two quarks and the gluon in three-jet events
and by measuring the differential two-jet rate. No signal of CP violation is
found. For the combinations of anomalous CP violating couplings, and , limits of \hat{h}_b < 0.59h^{\ast}_{b} < 3.02$ are given at 95\% CL.Comment: 8 pages, 1 postscript figure, uses here.sty, epsfig.st
Measurement of the tau lepton lifetime
The mean lifetime of the tau lepton is measured in a sample of 25700 tau pairs collected in 1992 with the ALEPH detector at LEP. A new analysis of the 1-1 topology events is introduced. In this analysis, the dependence of the impact parameter sum distribution on the daughter track momenta is taken into account, yielding improved precision compared to other impact parameter sum methods. Three other analyses of the one- and three-prong tau decays are updated with increased statistics. The measured lifetime is 293.5+/-3.1+/-1.7 fs. Including previous (1989-1991) ALEPH measurements, the combined tau lifetime is 293.7+/-2.7+/-1.6 fs
Tau hadronic branching ratios
From 64492 selected \tau-pair events, produced at the Z^0 resonance, the measurement of the tau decays into hadrons from a global analysis using 1991, 1992 and 1993 ALEPH data is presented. Special emphasis is given to the reconstruction of photons and \pi^0's, and the removal of fake photons. A detailed study of the systematics entering the \pi^0 reconstruction is also given. A complete and consistent set of tau hadronic branching ratios is presented for 18 exclusive modes. Most measurements are more precise than the present world average. The new level of precision reached allows a stringent test of \tau-\mu universality in hadronic decays, g_\tau/g_\mu \ = \ 1.0013 \ \pm \ 0.0095, and the first measurement of the vector and axial-vector contributions to the non-strange hadronic \tau decay width: R_{\tau ,V} \ = \ 1.788 \ \pm \ 0.025 and R_{\tau ,A} \ = \ 1.694 \ \pm \ 0.027. The ratio (R_{\tau ,V} - R_{\tau ,A}) / (R_{\tau ,V} + R_{\tau ,A}), equal to (2.7 \pm 1.3) \ \%, is a measure of the importance of QCD non-perturbative contributions to the hadronic \tau decay widt
- …
