72 research outputs found
In Vitro Folliculogenesis in Mammalian Models: A Computational Biology Study
In vitro folliculogenesis (ivF) has been proposed as an emerging technology to support follicle growth and oocyte development. It holds a great deal of attraction from preserving human fertility to improving animal reproductive biotechnology. Despite the mice model, where live offspring have been achieved,in medium-sized mammals, ivF has not been validated yet. Thus, the employment of a network theory approach has been proposed for interpreting the large amount of ivF information collected to date in different mammalian models in order to identify the controllers of the in vitro system. The WoS-derived data generated a scale-free network, easily navigable including 641 nodes and 2089 links. A limited number of controllers (7.2%) are responsible for network robustness by preserving it against random damage. The network nodes were stratified in a coherent biological manner on three layers: the input was composed of systemic hormones and somatic-oocyte paracrine factors; the intermediate one recognized mainly key signaling molecules such as PI3K, KL, JAK-STAT, SMAD4, and cAMP; and the output layer molecules were related to functional ivF endpoints such as the FSH receptor and steroidogenesis. Notably, the phenotypes of knock-out mice previously developed for hub.BN indirectly corroborate their biological relevance in early folliculogenesis. Finally, taking advantage of the STRING analysis approach, further controllers belonging to the metabolic axis backbone were identified, such as mTOR/FOXO, FOXO3/SIRT1, and VEGF, which have been poorly considered in ivF to date. Overall, this in silico study identifies new metabolic sensor molecules controlling ivF serving as a basis for designing innovative diagnostic and treatment methods to preserve female fertility
Photoinduced formation of gold nanoparticles into vinyl alcohol based polymers
Nanocomposites based on vinyl alcohol-containing polymers and nanostructured gold have been efficiently prepared by a UV photo-reduction process. The very fast process provided dispersed gold nanoparticles with average diameters ranging from 3 to 20 nm depending on the host polymer matrix and the irradiation time. Uniaxial drawing of the irradiated Au/polymer nanocomposites favours the anisotropic distribution of packed assemblies of gold particles, providing oriented films with polarization-dependent tunable optical properties. These pronounced dichroic properties suggest that the nanocomposite films could find potential applications as colour polarizing filters, radiation responsive polymeric objects and smart flexible films in packaging applications.16111058106
Overview of Current Drugs and Molecules in Development for Spinal Muscular Atrophy Therapy
The full text of this article can be found here: https://link.springer.com/article/10.1007/s40265-018-0868-
How do cardiologists select patients for dual antiplatelet therapy continuation beyond 1 year after a myocardial infarction? Insights from the EYESHOT Post-MI Study
Background: Current guidelines suggest to consider dual antiplatelet therapy (DAPT) continuation for longer than 12 months in selected patients with myocardial infarction (MI). Hypothesis: We sought to assess the criteria used by cardiologists in daily practice to select patients with a history of MI eligible for DAPT continuation beyond 1 year. Methods: We analyzed data from the EYESHOT Post-MI, a prospective, observational, nationwide study aimed to evaluate the management of patients presenting to cardiologists 1 to 3 years from the last MI event. Results: Out of the 1633 post-MI patients enrolled in the study between March and December 2017, 557 (34.1%) were on DAPT at the time of enrolment, and 450 (27.6%) were prescribed DAPT after cardiologist assessment. At multivariate analyses, a percutaneous coronary intervention (PCI) with multiple stents and the presence of peripheral artery disease (PAD) resulted as independent predictors of DAPT continuation, while atrial fibrillation was the only independent predictor of DAPT interruption for patients both at the second and the third year from MI at enrolment and the time of discharge/end of the visit. Conclusions: Risk scores recommended by current guidelines for guiding decisions on DAPT duration are underused and misused in clinical practice. A PCI with multiple stents and a history of PAD resulted as the clinical variables more frequently associated with DAPT continuation beyond 1 year from the index MI
Systems biology analysis of the endocannabinoid system reveals a scale-free network with distinct roles for anandamide and 2-arachidonoylglycerol.
We represented the endocannabinoid system (ECS) as a biological network, where ECS molecules are the nodes (123) and their interactions the links (189). ECS network follows a scale-free topology, which confers robustness against random damage, easy navigability, and controllability. Network topological parameters, such as clustering coefficient (i.e., how the nodes form clusters) of 0.0009, network diameter (the longest shortest path among all pairs of nodes) of 12, averaged number of neighbors (the mean number of connections per node) of 3.073, and characteristic path length (the expected distance between two connected nodes) of 4.715, suggested that molecular messages are transferred through the ECS network quickly and specifically. Interestingly, ∼75% of nodes are located on, or are active at the level of, the cell membrane. The hubs of ECS network are anandamide (AEA) and 2-arachidonoylglycerol (2-AG), which have also the highest value of betweeness centrality, and their removal causes network collapse into multiple disconnected components. Importantly, AEA is a ubiquitous player while 2-AG plays more restricted actions. Instead, the product of their degradation, arachidonic acid, and their hydrolyzing enzyme, fatty acid amide hydrolase, FAAH, have a marginal impact on ECS network, indeed their removal did not significantly affect its topology
Index values in the diefferential bone marrow count in Sprague-Dawley rats: available tools to evaluate haematotoxicity
Systems Biology Analysis of the Endocannabinoid System Reveals a Scale-free Network with Distinct Roles for Anandamide and 2-Arachidonoylglycerol
Abstract We represented the endocannabinoid system (ECS) as a biological network, where ECS molecules are the nodes (123) and their interactions the links (189). ECS network follows a scale-free topology, which confers robustness against random damage, easy navigability, and controllability. Network topological parameters, such as clustering coefficient (i.e., how the nodes form clusters) of 0.0009, network diameter (the longest shortest path among all pairs of nodes) of 12, averaged number of neighbors (the mean number of connections per node) of 3.073, and characteristic path length (the expected distance between two connected nodes) of 4.715, suggested that molecular messages are transferred through the ECS network quickly and specifically. Interestingly, 75% of nodes are located on, or are active at the level of, the cell membrane. The hubs of ECS network are anandamide (AEA) and 2-arachidonoylglycerol (2-AG), which have also the highest value of betweeness centrality, and their removal causes network collapse into multiple disconnected components. Importantly, AEA is a ubiquitous player while 2-AG plays more restricted actions. Instead, the product of their degradation, arachidonic acid, and their hydrolyzing enzyme, fatty acid amide hydrolase, FAAH, have a marginal impact on ECS network, indeed their removal did not significantly affect its topology
- …
