19,253 research outputs found
Recommended from our members
Portable Perimetry Using Eye-Tracking on a Tablet Computer—A Feasibility Assessment
Purpose: Visual field (VF) examination by standard automated perimetry (SAP) is an important method of clinical assessment. However, the complexity of the test, and its use of bulky, expensive equipment makes it impractical for case-finding. We propose and evaluate a new approach to paracentral VF assessment that combines an inexpensive eye-tracker with a portable tablet computer (“Eyecatcher”).
Methods: Twenty-four eyes from 12 glaucoma patients, and 12 eyes from six age-similar controls were examined. Participants were tested monocularly (once per eye), with both the novel Eyecatcher test and traditional SAP (HFA SITA standard 24-2). For Eyecatcher, the participant's task was to simply to look at a sequence of fixed-luminance dots, presented relative to the current point of fixation. Start and end fixations were used to determine locations where stimuli were seen/unseen, and to build a continuous map of sensitivity loss across a VF of approximately 20°.
Results: Eyecatcher was able to clearly separate patients from controls, and the results were consistent with those from traditional SAP. In particular, mean Eyecatcher scores were strongly correlated with mean deviation scores (r2 = 0.64, P < 0.001), and there was good concordance between corresponding VF locations (∼84%). Participants reported that Eyecatcher was more enjoyable, easier to perform, and less tiring than SAP (all P < 0.001).
Conclusions: Portable perimetry using an inexpensive eye-tracker and a tablet computer is feasible, although possible means of improvement are suggested.
Translational Relevance: Such a test could have significant utility as a case finding device
Seismic analysis of 70 Ophiuchi A: A new quantity proposed
The basic intent of this paper is to model 70 Ophiuchi A using the latest
asteroseismic observations as complementary constraints and to determine the
fundamental parameters of the star. Additionally, we propose a new quantity to
lift the degeneracy between the initial chemical composition and stellar age.
Using the Yale stellar evolution code (YREC7), we construct a series of stellar
evolutionary tracks for the mass range = 0.85 -- 0.93 with
different composition (0.26 -- 0.30) and (0.017 -- 0.023).
Along these tracks, we select a grid of stellar model candidates that fall
within the error box in the HR diagram to calculate the theoretical
frequencies, the large- and small- frequency separations using the Guenther's
stellar pulsation code. Following the asymptotic formula of stellar -modes,
we define a quantity which is correlated with stellar age. Also, we
test it by theoretical adiabatic frequencies of many models. Many detailed
models of 70 Ophiuchi A have been listed in Table 3. By combining all
non-asteroseismic observations available for 70 Ophiuchi A with these
seismological data, we think that Model 60, Model 125 and Model 126, listed in
Table 3, are the optimum models presently. Meanwhile, we predict that the
radius of this star is about 0.860 -- 0.865 and the age is about
6.8 -- 7.0 Gyr with mass 0.89 -- 0.90 . Additionally, we prove that
the new quantity can be a useful indicator of stellar age.Comment: 23 pages, 5 figures, accepted by New Astronom
Asteroseismic study of solar-like stars: A method of estimating stellar age
Asteroseismology, as a tool to use the indirect information contained in
stellar oscillations to probe the stellar interiors, is an active field of
research presently. Stellar age, as a fundamental property of star apart from
its mass, is most difficult to estimate. In addition, the estimating of stellar
age can provide the chance to study the time evolution of astronomical
phenomena. In our poster, we summarize our previous work and further present a
method to determine age of low-mass main-sequence star.Comment: 2 pages, 1 figures, submitted to IAUS25
Recommended from our members
Assessing plantar sensation in the foot using the FOot Roughness Discrimination Test (FoRDT™): a reliability and validity study in stroke
BACKGROUND: The foot sole represents a sensory dynamometric map and is essential for balance and gait control. Sensory impairments are common, yet often difficult to quantify in neurological conditions, particularly stroke. A functionally oriented and quantifiable assessment, the Foot Roughness Discrimination Test (FoRDT™), was developed to address these shortcomings. OBJECTIVE: To evaluate inter- and intra-rater reliability, convergent and discriminant validity of the Foot Roughness Discrimination Test (FoRDT™). DESIGN: Test-retest design. SETTING: Hospital Outpatient. PARTICIPANTS: Thirty-two people with stroke (mean age 70) at least 3 months after stroke, and 32 healthy, age-matched controls (mean age 70). MAIN OUTCOME MEASURES: Roughness discrimination thresholds were quantified utilising acrylic foot plates, laser-cut to produce graded spatial gratings. Stroke participants were tested on three occasions, and by two different raters. Inter- and intra-rater reliability and agreement were evaluated with Intraclass Correlation Coefficients and Bland-Altman plots. Convergent validity was evaluated through Spearman rank correlation coefficients (rho) between the FoRDT™ and the Erasmus modified Nottingham Sensory Assessment (EmNSA). RESULTS: Intra- and inter rater reliability and agreement were excellent (ICC =.86 (95% CI .72-.92) and .90 (95% CI .76 -.96)). Discriminant validity was demonstrated through significant differences in FoRDT™ between stroke and control participants (p.05). CONCLUSIONS: This simple and functionally oriented test of plantar sensation is reliable, valid and clinically feasible for use in an ambulatory, chronic stroke and elderly population. It offers clinicians and researchers a sensitive and robust sensory measure and may further support the evaluation of rehabilitation targeting foot sensation. This article is protected by copyright. All rights reserved
Reversible dynamic isomerism change in the solid state, from Bi4I16 clusters to BiI4 1D chains in L-cystine based hybrids: templating effect of cations in iodobismuthate network formation
The dehydration of a iodobismuthate hybrid built up from Bi4I16 clusters and protonated L-cystine molecules involves an unprecedented reversible dynamic structural change in the solid state leading to 1D BiI4 chains and 1D helical molecular chains, highlighting the templating effect of cations in the formation of iodobismuthate network
Is the cosmic UV background fluctuating at redshift z ~ 6 ?
We study the Gunn-Peterson effect of the photo-ionized intergalactic
medium(IGM) in the redshift range 5< z <6.4 using semi-analytic simulations
based on the lognormal model. Assuming a rapidly evolved and spatially uniform
ionizing background, the simulation can produce all the observed abnormal
statistical features near redshift z ~ 6. They include: 1) rapidly increase of
absorption depths; 2) large scatter in the optical depths; 3) long-tailed
distributions of transmitted flux and 4) long dark gaps in spectra. These
abnormal features are mainly due to rare events, which correspond to the
long-tailed probability distribution of the IGM density field, and therefore,
they may not imply significantly spatial fluctuations in the UV ionizing
background at z ~ 6.Comment: 12 pages, 4 figs, accepted by ApJ
Synthesis of Positron Emission Tomography (PET) Images via Multi-channel Generative Adversarial Networks (GANs)
Positron emission tomography (PET) image synthesis plays an important role,
which can be used to boost the training data for computer aided diagnosis
systems. However, existing image synthesis methods have problems in
synthesizing the low resolution PET images. To address these limitations, we
propose multi-channel generative adversarial networks (M-GAN) based PET image
synthesis method. Different to the existing methods which rely on using
low-level features, the proposed M-GAN is capable to represent the features in
a high-level of semantic based on the adversarial learning concept. In
addition, M-GAN enables to take the input from the annotation (label) to
synthesize the high uptake regions e.g., tumors and from the computed
tomography (CT) images to constrain the appearance consistency and output the
synthetic PET images directly. Our results on 50 lung cancer PET-CT studies
indicate that our method was much closer to the real PET images when compared
with the existing methods.Comment: 9 pages, 2 figure
- …
