1,004 research outputs found
Security of quantum cryptography using balanced homodyne detection
In this paper we investigate the security of a quantum cryptographic scheme
which utilizes balanced homodyne detection and weak coherent pulse (WCP). The
performance of the system is mainly characterized by the intensity of the WCP
and postselected threshold. Two of the simplest intercept/resend eavesdropping
attacks are analyzed. The secure key gain for a given loss is also discussed in
terms of the pulse intensity and threshold.Comment: RevTeX4, 8pages, 7 figure
Full Quantum Analysis of Two-Photon Absorption Using Two-Photon Wavefunction: Comparison with One-Photon Absorption
For dissipation-free photon-photon interaction at the single photon level, we
analyze one-photon transition and two-photon transition induced by photon pairs
in three-level atoms using two-photon wavefunctions. We show that the
two-photon absorption can be substantially enhanced by adjusting the time
correlation of photon pairs. We study two typical cases: Gaussian wavefunction
and rectangular wavefunction. In the latter, we find that under special
conditions one-photon transition is completely suppressed while the high
probability of two-photon transition is maintained.Comment: 6 pages, 4 figure
The role of cyclin synthesis, modification and destruction in the control of cell division
This paper reviews our current knowledge of the cyclins based on observations of the oocytes and eggs of sea urchins, clams and frogs. Cyclins are proteins found in all eukaryotes whose special property is rapid destruction at specific stages in the cell cycle. The cyclins fall into three families. A-type cyclins have been found in clams, flies and frogs. B-type cyclins have been found in clams, flies, frogs, sea urchins and fission yeast. A more distantly related family of three genes is found in Saccharomyces cerevisiae. B-type cyclins appear to be required for cells to enter mitosis, and their destruction is thought to be necessary for exit from mitosis. We describe evidence in support of these ideas, and describe various conditions under which cyclin destruction is delayed or deranged. We conclude with a discussion of the relationship between the cyclins and maturation- (or M phase-) promoting factor and some ideas on how the cyclins may work
Interfacial motion in flexo- and order-electric switching between nematic filled states
We consider a nematic liquid crystal, in coexistence with its isotropic
phase, in contact with a substrate patterned with rectangular grooves. In such
a system, the nematic phase may fill the grooves without the occurrence of
complete wetting. There may exist multiple (meta)stable filled states, each
characterised by the type of distortion (bend or splay) in each corner of the
groove and by the shape of the nematic-isotropic interface, and additionally
the plateaux that separate the grooves may be either dry or wet with a thin
layer of nematic. Using numerical simulations, we analyse the dynamical
response of the system to an externally- applied electric field, with the aim
of identifying switching transitions between these filled states. We find that
order-electric coupling between the fluid and the field provides a means of
switching between states where the plateaux between grooves are dry and states
where they are wet by a nematic layer, without affecting the configuration of
the nematic within the groove. We find that flexoelectric coupling may change
the nematic texture in the groove, provided that the flexoelectric coupling
differentiates between the types of distortion at the corners of the substrate.
We identify intermediate stages of the transitions, and the role played by the
motion of the nematic-isotropic interface. We determine quantitatively the
field magnitudes and orientations required to effect each type of transition.Comment: 14 pages, 12 fig
Alternative approach to electromagnetic field quantization in nonlinear and inhomogeneous media
A simple approach is proposed for the quantization of the electromagnetic
field in nonlinear and inhomogeneous media. Given the dielectric function and
nonlinear susceptibilities, the Hamiltonian of the electromagnetic field is
determined completely by this quantization method. From Heisenberg's equations
we derive Maxwell's equations for the field operators. When the nonlinearity
goes to zero, this quantization method returns to the generalized canonical
quantization procedure for linear inhomogeneous media [Phys. Rev. A, 43, 467,
1991]. The explicit Hamiltonians for the second-order and third-order nonlinear
quasi-steady-state processes are obtained based on this quantization procedure.Comment: Corrections in references and introductio
Recommended from our members
The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus.
Filamentous fungi, such as Neurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling of N. crassa on 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors in N. crassa and characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level
Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime
Numerical simulations are used to study how fiber supercontinuum generation
seeded by picosecond pulses can be actively controlled through the use of input
pulse modulation. By carrying out multiple simulations in the presence of
noise, we show how tailored supercontinuum Spectra with increased bandwidth and
improved stability can be generated using an input envelope modulation of
appropriate frequency and depth. The results are discussed in terms of the
non-linear propagation dynamics and pump depletion.Comment: Aspects of this work were presented in Paper ThJ2 at OECC/ACOFT 2008,
Sydney Australia 7-10 July (2008). Journal paper submitted for publication 30
July 200
Pulse-mode quantum projection synthesis: Effects of mode mismatch on optical state truncation and preparation
Quantum projection synthesis can be used for phase-probability-distribution
measurement, optical-state truncation and preparation. The method relies on
interfering optical lights, which is a major challenge in experiments performed
by pulsed light sources. In the pulsed regime, the time frequency overlap of
the interfering lights plays a crucial role on the efficiency of the method
when they have different mode structures. In this paper, the pulsed mode
projection synthesis is developed, the mode structure of interfering lights are
characterized and the effect of this overlap (or mode match) on the fidelity of
optical-state truncation and preparation is investigated. By introducing the
positive-operator-valued measure (POVM) for the detection events in the scheme,
the effect of mode mismatch between the photon-counting detectors and the
incident lights are also presented.Comment: 11 pages, 4 figures, submitted to Phys. Rev.
Characteristics of transposable element exonization within human and mouse
Insertion of transposed elements within mammalian genes is thought to be an
important contributor to mammalian evolution and speciation. Insertion of
transposed elements into introns can lead to their activation as alternatively
spliced cassette exons, an event called exonization. Elucidation of the
evolutionary constraints that have shaped fixation of transposed elements
within human and mouse protein coding genes and subsequent exonization is
important for understanding of how the exonization process has affected
transcriptome and proteome complexities. Here we show that exonization of
transposed elements is biased towards the beginning of the coding sequence in
both human and mouse genes. Analysis of single nucleotide polymorphisms (SNPs)
revealed that exonization of transposed elements can be population-specific,
implying that exonizations may enhance divergence and lead to speciation. SNP
density analysis revealed differences between Alu and other transposed
elements. Finally, we identified cases of primate-specific Alu elements that
depend on RNA editing for their exonization. These results shed light on TE
fixation and the exonization process within human and mouse genes.Comment: 11 pages, 4 figure
‘Lest we forget’*: a veteran and son share a ‘warfare tourism’ experience
Warfare tourism’ represents an increasingly significant dimension of contemporary tourism. This paper provides a fresh perspective on participation in ‘warfare tourism’ by investigating the behaviour and experiences of a living veteran and his son returning to two theatres of war in which the veteran had served in the Royal Navy during the Second World War. Active interviews with the two family members were used to gather rich data regarding the two extended trips, which had been funded by ‘Heroes Return’, to Australia in 2012 and Sri Lanka in 2013. The findings indicate that some of the facets of visiting the fallen at other dark tourism sites, such as empathetic identification and personal connection, are also very relevant to trips shared between the living. However, with the living these contribute to a powerful co-created experience in which ‘closer’ bonds between the travellers can be developed. Furthermore, whilst the experiences at times represented ‘bitter-sweet’ nostalgia for the veteran, they also provided the son with the opportunity to ‘look through his father’s eyes’ from both a past and current perspective. Given that there will be war veterans as long as conflicts exist, the results have valuable messages for all those dealing with veterans in the futur
- …
