409 research outputs found
Diagrammatic quantum field formalism for localized electrons
We introduce a diagrammatic quantum field formalism for the evaluation of
normalized expectation values of operators, and suitable for systems with
localized electrons. It is used to develop a convergent series expansion for
the energy in powers of overlap integrals of single-particle orbitals. This
method gives intuitive and practical rules for writing down the expansion to
arbitrary order of overlap, and can be applied to any spin configuration and to
any dimension. Its applicability for systems with well localized electrons has
been illustrated with examples, including the two-dimensional Wigner crystal
and spin-singlets in the low-density electron gas.Comment: 13 pages, 0 figure
Volatile Composition and Outgassing in C/2018 Y1 (IWAMOTO): Extending Detection Limits for High-Resolution IR Cometary Spectroscopy at the NASA-IRTF
We used iSHELL, the powerful high-resolution ( /~ 40,000) cross-dispersed IR spectrograph at the NASA-IRTF to measure the native ice composition and outgassing of moderately bright, long-period comet C/2018 Y1 (Iwamoto) (hereafter Y1) within weeks of its discovery. We measured production rates for H2O, and production rates and abundance ratios relative to H2O for eight trace molecules, including the most complete measure of cometary CH4 achieved to date. Compared with mean abundances measured among comets, our study revealed enriched CH3OH and C2H6 yet depleted CO and C2H2, perhaps indicating highly efficient H- atom addition on interstellar grains prior to their incorporation into the nucleus. The combined high spectral resolving power and broad spectral coverage of iSHELL allowed characterizing cometary composition using only three instrument settings, and its long-slit coverage allowed comparing the spatial distributions of molecular emissions and dust continuum
A variationally computed line list for hot NH3
We present 'BYTe', a comprehensive 'hot' line list for the ro-vibrational
transitions of ammonia, 14NH3, in its ground electronic state. This line list
has been computed variationally using the program suite TROVE, a new
spectroscopically-determined potential energy surface and an ab initio dipole
moment surface. BYTe, is designed to be used at all temperatures up to 1500K.
It comprises 1137650964 transitions in the frequency range from 0 to 12000
cm-1, constructed from 1366519 energy levels below 18000 cm-1 having J values
below 36. Comparisons with laboratory data confirm the accuracy of the line
list which is suitable for modelling a variety of astrophysical problems
including the atmospheres of extrasolar planets and brown dwarfs.Comment: the paper has been submitted to MNRA
A quantum fluid of metallic hydrogen suggested by first-principles calculations
It is generally assumed that solid hydrogen will transform into a metallic
alkali-like crystal at sufficiently high pressure. However, some theoretical
models have also suggested that compressed hydrogen may form an unusual
two-component (protons and electrons) metallic fluid at low temperature, or
possibly even a zero-temperature liquid ground state. The existence of these
new states of matter is conditional on the presence of a maximum in the melting
temperature versus pressure curve (the 'melt line'). Previous measurements of
the hydrogen melt line up to pressures of 44 GPa have led to controversial
conclusions regarding the existence of this maximum. Here we report ab initio
calculations that establish the melt line up to 200 GPa. We predict that subtle
changes in the intermolecular interactions lead to a decline of the melt line
above 90 GPa. The implication is that as solid molecular hydrogen is
compressed, it transforms into a low-temperature quantum fluid before becoming
a monatomic crystal. The emerging low-temperature phase diagram of hydrogen and
its isotopes bears analogies with the familiar phases of 3He and 4He, the only
known zero-temperature liquids, but the long-range Coulombic interactions and
the large component mass ratio present in hydrogen would ensure dramatically
different propertiesComment: See related paper: cond-mat/041040
A Multi-Wavelength Study of Parent Volatile Abundances in Comet C/2006 M4 (SWAN)
Volatile organic emissions were detected post-perihelion in the long period comet C/2006 M4 (SWAN) in October and November 2006. Our study combines target-of-opportunity, observations using the infrared Cryogenic Echelle Spectrometer (CSHELL) at the NASA-IRTF 3-m telescope, and millimeter wavelength observations using the Arizona Radio Observatory (ARO) 12-m telescope. Five parent volatiles were measured with CSHELL (H2O, CO, CH3OH, CH4, and C2H6), and two additional species (HCN and CS) were measured with the ARID 12-m. These revealed highly depleted CO and somewhat enriched CH3OH compared with abundances observed in the dominant group of long-period (Oort cloud) comets in our sample and similar to those observed recently in Comet 8P/Tuttle. This may indicate highly efficient H-atom addition to CO at very low temperature (approx.10-20 K) on the surfaces of interstellar (pre-cometary) grains. Comet C12006 M4 had nearly "normal" C2H6, and CH4, suggesting a processing history similar to that experienced by the dominant group. When compared with estimated water production at the time of the millimeter observations, HCN was slightly depleted compared with the normal abundance in comets based on 1R observations but was consistent with the majority of values from the millimeter. The ratio CS/HCN in C/2006 M4 was within the range measured in ten comets at millimeter wavelengths. The higher apparent H-atom conversion efficiency compared with most comets may indicate that the icy grains incorporated into C/2006 M4 were exposed to higher H-atom densities, or alternatively to similar densities but for a longer period of time
Water in the Near IR spectrum of Comet 8P/Tuttle
High resolution spectra of Comet 8P/Tuttle were obtained in the frequency
range 3440.6-3462.6 cm-1 on 3 January 2008 UT using CGS4 with echelle grating
on UKIRT. In addition to recording strong solar pumped fluorescent (SPF) lines
of H2O, the long integration time (152 miutes on target) enabled eight weaker
H2O features to be assigned, most of which had not previously been identified
in cometary spectra. These transitions, which are from higher energy upper
states, are similar in character to the so-called 'SH' lines recorded in the
post Deep Impact spectrum of comet Tempel 1 (Barber et al., 2007). We have
identified certain characteristics that these lines have in common, and which
in addition to helping to define this new class of cometary line, give some
clues to the physical processes involved in their production. Finally, we
derive an H2O rotational temperature of 62+/- K and a water production rate of
(1.4+/-0.3)E28 molecules/s.Comment: Paper has been accepted for publication by MNRAS (11/06/09
Dust observations of Comet 9P/Tempel 1 at the time of the Deep Impact
On 4 July 2005 at 05:52 UT, the impactor of NASA's Deep Impact (DI) mission
crashed into comet 9P/Tempel 1 with a velocity of about 10 km/s. The material
ejected by the impact expanded into the normal coma, produced by ordinary
cometary activity.
The characteristics of the non-impact coma and cloud produced by the impact
were studied by observations in the visible wavelengths and in the near-IR. The
scattering characteristics of the "normal" coma of solid particles were studied
by comparing images in various spectral regions, from the UV to the near-IR.
For the non-impact coma, a proxy of the dust production has been measured in
various spectral regions. The presence of sublimating grains has been detected.
Their lifetime was found to be about 11 hours. Regarding the cloud produced by
the impact, the total geometric cross section multiplied by the albedo was
measured as a function of the color and time. The projected velocity appeared
to obey a Gaussian distribution with the average velocity of the order of 115
m/s. By comparing the observations taken about 3 hours after the impact, we
have found a strong decrease in the cross section in J filter, while that in Ks
remained almost constant. This is interpreted as the result of sublimation of
grains dominated by particles of sizes of the order of some microns.Comment: Accepted by A&
The composition of the protosolar disk and the formation conditions for comets
Conditions in the protosolar nebula have left their mark in the composition
of cometary volatiles, thought to be some of the most pristine material in the
solar system. Cometary compositions represent the end point of processing that
began in the parent molecular cloud core and continued through the collapse of
that core to form the protosun and the solar nebula, and finally during the
evolution of the solar nebula itself as the cometary bodies were accreting.
Disentangling the effects of the various epochs on the final composition of a
comet is complicated. But comets are not the only source of information about
the solar nebula. Protostellar disks around young stars similar to the protosun
provide a way of investigating the evolution of disks similar to the solar
nebula while they are in the process of evolving to form their own solar
systems. In this way we can learn about the physical and chemical conditions
under which comets formed, and about the types of dynamical processing that
shaped the solar system we see today.
This paper summarizes some recent contributions to our understanding of both
cometary volatiles and the composition, structure and evolution of protostellar
disks.Comment: To appear in Space Science Reviews. The final publication is
available at Springer via http://dx.doi.org/10.1007/s11214-015-0167-
microRNA input into a neural ultradian oscillator controls emergence and timing of alternative cell states.
© 2014 Macmillan Publishers LimitedThis is an open access article that is freely available in ORE or from the publisher's web site. Please cite the published version.Progenitor maintenance, timed differentiation and the potential to enter quiescence are three fundamental processes that underlie the development of any organ system. In the nervous system, progenitor cells show short-period oscillations in the expression of the transcriptional repressor Hes1, while neurons and quiescent progenitors show stable low and high levels of Hes1, respectively. Here we use experimental data to develop a mathematical model of the double-negative interaction between Hes1 and a microRNA, miR-9, with the aim of understanding how cells transition from one state to another. We show that the input of miR-9 into the Hes1 oscillator tunes its oscillatory dynamics, and endows the system with bistability and the ability to measure time to differentiation. Our results suggest that a relatively simple and widespread network of cross-repressive interactions provides a unifying framework for progenitor maintenance, the timing of differentiation and the emergence of alternative cell states.Wellcome Trus
Principles of meiotic chromosome assembly revealed in S. cerevisiae
During meiotic prophase, chromosomes organise into a series of chromatin loops emanating from a proteinaceous axis, but the mechanisms of assembly remain unclear. Here we use Saccharomyces cerevisiae to explore how this elaborate three-dimensional chromosome organisation is linked to genomic sequence. As cells enter meiosis, we observe that strong cohesin-dependent grid-like Hi-C interaction patterns emerge, reminiscent of mammalian interphase organisation, but with distinct regulation. Meiotic patterns agree with simulations of loop extrusion with growth limited by barriers, in which a heterogeneous population of expanding loops develop along the chromosome. Importantly, CTCF, the factor that imposes similar features in mammalian interphase, is absent in S. cerevisiae, suggesting alternative mechanisms of barrier formation. While grid-like interactions emerge independently of meiotic chromosome synapsis, synapsis itself generates additional compaction that matures differentially according to telomere proximity and chromosome size. Collectively, our results elucidate fundamental principles of chromosome assembly and demonstrate the essential role of cohesin within this evolutionarily conserved process
- …
