2,072 research outputs found

    Classical evolution of fractal measures generated by a scalar field on the lattice

    Full text link
    We investigate the classical evolution of a ϕ4\phi^4 scalar field theory, using in the initial state random field configurations possessing a fractal measure expressed by a non-integer mass dimension. These configurations resemble the equilibrium state of a critical scalar condensate. The measures of the initial fractal behavior vary in time following the mean field motion. We show that the remnants of the original fractal geometry survive and leave an imprint in the system time averaged observables, even for large times compared to the approximate oscillation period of the mean field, determined by the model parameters. This behavior becomes more transparent in the evolution of a deterministic Cantor-like scalar field configuration. We extend our study to the case of two interacting scalar fields, and we find qualitatively similar results. Therefore, our analysis indicates that the geometrical properties of a critical system initially at equilibrium could sustain for several periods of the field oscillations in the phase of non-equilibrium evolution.Comment: 13 pages, 13 figures, version published at Int. J. Mod. Phys.

    On-surface and Subsurface Adsorption of Oxygen on Stepped Ag(210) and Ag(410) Surfaces

    Full text link
    The adsorption of atomic oxygen and its inclusion into subsurface sites on Ag(210) and Ag(410) surfaces have been investigated using density functional theory. We find that--in the absence of adatoms on the first metal layer--subsurface adsorption results in strong lattice distortion which makes it energetically unfavoured. However subsurface sites are significantly stabilised when a sufficient amount of O adatoms is present on the surface. At high enough O coverage on the Ag(210) surface the mixed on-surface + subsurface O adsorption is energetically favoured with respect to the on-surface only adsorption. Instead, on the Ag(410) surface, at the coverage we have considered (3/8 ML), the existence of stable terrace sites makes the subsurface O incorporation less favourable. These findings are compatible with the results of recent HREEL experiments which have actually motivated this work.Comment: 8 pages, 4 figures and 1 tabl

    Effective Average Action in N=1 Super-Yang-Mills Theory

    Full text link
    For N=1 Super-Yang-Mills theory we generalize the effective average action Gamma_k in a manifest supersymmetric way using the superspace formalism. The exact evolution equation for Gamma_k is derived and, introducing as an application a simple truncation, the standard one-loop beta-function of N=1 SYM theory is obtained.Comment: 17 pages, LaTeX, some remarks added, misprints corrected, to appear in Phys. Rev.

    Effective average action in statistical physics and quantum field theory

    Get PDF
    An exact renormalization group equation describes the dependence of the free energy on an infrared cutoff for the quantum or thermal fluctuations. It interpolates between the microphysical laws and the complex macroscopic phenomena. We present a simple unified description of critical phenomena for O(N)-symmetric scalar models in two, three or four dimensions, including essential scaling for the Kosterlitz-Thouless transition.Comment: 34 pages,5 figures,LaTe

    The beta functions of a scalar theory coupled to gravity

    Full text link
    We study a scalar field theory coupled to gravity on a flat background, below Planck's energy. Einstein's theory is treated as an effective field theory. Within the context of Wilson's renormalization group, we compute gravitational corrections to the beta functions and the anomalous dimension of the scalar field, taking into account threshold effects.Comment: 13 pages, plainTe

    Two loop results from one loop computations and non perturbative solutions of exact evolution equations

    Full text link
    A nonperturbative method is proposed for the approximative solution of the exact evolution equation which describes the scale dependence of the effective average action. It consists of a combination of exact evolution equations for independent couplings with renormalization group improved one loop expressions of secondary couplings. Our method is illustrated by an example: We compute the beta-function of the quartic coupling lambda of an O(N) symmetric scalar field theory to order lambda^3 as well as the anomalous dimension to order lambda^2 using only one loop expressions and find agreement with the two loop perturbation theory. We also treat the case of very strong coupling and confirm the existence of a "triviality bound".Comment: 32 pages, HD-THEP-94-3, replaced because: lines too long, blank line

    Hard Non-commutative Loops Resummation

    Get PDF
    The non-commutative version of the euclidean g2ϕ4g^2\phi^4 theory is considered. By using Wilsonian flow equations the ultraviolet renormalizability can be proved to all orders in perturbation theory. On the other hand, the infrared sector cannot be treated perturbatively and requires a resummation of the leading divergencies in the two-point function. This is analogous to what is done in the Hard Thermal Loops resummation of finite temperature field theory. Next-to-leading order corrections to the self-energy are computed, resulting in O(g3)O(g^3) contributions in the massless case, and O(g6logg2)O(g^6\log g^2) in the massive one.Comment: 4 pages, 3 figures. The resummation procedure is now discussed also at finite ultraviolet cut-off. Minor changes in abstract and references. Final version to be published in Physical Review Letter

    Green-Schwarz Formulation of Self-Dual Superstring

    Full text link
    The self-dual superstring has been described previously in a Neveu-Schwarz-Ramond formulation with local N=2 or 4 world-sheet supersymmetry. We present a Green-Schwarz-type formulation, with manifest spacetime supersymmetry.Comment: 11 pg., (uuencoded dvi file) ITP-SB-92-5

    Effective Action for the Quark-Meson Model

    Full text link
    The scale dependence of an effective average action for mesons and quarks is described by a nonperturbative flow equation. The running couplings lead to spontaneous chiral symmetry breaking. We argue that for strong Yukawa coupling between quarks and mesons the low momentum physics is essentially determined by infrared fixed points. This allows us to establish relations between various parameters related to the meson potential. The results for fπf_\pi and \VEV{\olpsi\psi} are not very sensitive to the poorly known details of the quark--meson effective action at scales where the mesonic bound states form. For realistic constituent quark masses we find fπf_\pi around 100\MeV.Comment: 56 pages (including 10 figures and 1 table), uses epsf.st
    corecore