2,072 research outputs found
Classical evolution of fractal measures generated by a scalar field on the lattice
We investigate the classical evolution of a scalar field theory,
using in the initial state random field configurations possessing a fractal
measure expressed by a non-integer mass dimension. These configurations
resemble the equilibrium state of a critical scalar condensate. The measures of
the initial fractal behavior vary in time following the mean field motion. We
show that the remnants of the original fractal geometry survive and leave an
imprint in the system time averaged observables, even for large times compared
to the approximate oscillation period of the mean field, determined by the
model parameters. This behavior becomes more transparent in the evolution of a
deterministic Cantor-like scalar field configuration. We extend our study to
the case of two interacting scalar fields, and we find qualitatively similar
results. Therefore, our analysis indicates that the geometrical properties of a
critical system initially at equilibrium could sustain for several periods of
the field oscillations in the phase of non-equilibrium evolution.Comment: 13 pages, 13 figures, version published at Int. J. Mod. Phys.
On-surface and Subsurface Adsorption of Oxygen on Stepped Ag(210) and Ag(410) Surfaces
The adsorption of atomic oxygen and its inclusion into subsurface sites on
Ag(210) and Ag(410) surfaces have been investigated using density functional
theory. We find that--in the absence of adatoms on the first metal
layer--subsurface adsorption results in strong lattice distortion which makes
it energetically unfavoured. However subsurface sites are significantly
stabilised when a sufficient amount of O adatoms is present on the surface. At
high enough O coverage on the Ag(210) surface the mixed on-surface + subsurface
O adsorption is energetically favoured with respect to the on-surface only
adsorption. Instead, on the Ag(410) surface, at the coverage we have considered
(3/8 ML), the existence of stable terrace sites makes the subsurface O
incorporation less favourable. These findings are compatible with the results
of recent HREEL experiments which have actually motivated this work.Comment: 8 pages, 4 figures and 1 tabl
Effective Average Action in N=1 Super-Yang-Mills Theory
For N=1 Super-Yang-Mills theory we generalize the effective average action
Gamma_k in a manifest supersymmetric way using the superspace formalism. The
exact evolution equation for Gamma_k is derived and, introducing as an
application a simple truncation, the standard one-loop beta-function of N=1 SYM
theory is obtained.Comment: 17 pages, LaTeX, some remarks added, misprints corrected, to appear
in Phys. Rev.
Effective average action in statistical physics and quantum field theory
An exact renormalization group equation describes the dependence of the free
energy on an infrared cutoff for the quantum or thermal fluctuations. It
interpolates between the microphysical laws and the complex macroscopic
phenomena. We present a simple unified description of critical phenomena for
O(N)-symmetric scalar models in two, three or four dimensions, including
essential scaling for the Kosterlitz-Thouless transition.Comment: 34 pages,5 figures,LaTe
The beta functions of a scalar theory coupled to gravity
We study a scalar field theory coupled to gravity on a flat background, below
Planck's energy. Einstein's theory is treated as an effective field theory.
Within the context of Wilson's renormalization group, we compute gravitational
corrections to the beta functions and the anomalous dimension of the scalar
field, taking into account threshold effects.Comment: 13 pages, plainTe
Two loop results from one loop computations and non perturbative solutions of exact evolution equations
A nonperturbative method is proposed for the approximative solution of the
exact evolution equation which describes the scale dependence of the effective
average action. It consists of a combination of exact evolution equations for
independent couplings with renormalization group improved one loop expressions
of secondary couplings. Our method is illustrated by an example: We compute the
beta-function of the quartic coupling lambda of an O(N) symmetric scalar field
theory to order lambda^3 as well as the anomalous dimension to order lambda^2
using only one loop expressions and find agreement with the two loop
perturbation theory. We also treat the case of very strong coupling and confirm
the existence of a "triviality bound".Comment: 32 pages, HD-THEP-94-3, replaced because: lines too long, blank line
Hard Non-commutative Loops Resummation
The non-commutative version of the euclidean theory is
considered. By using Wilsonian flow equations the ultraviolet renormalizability
can be proved to all orders in perturbation theory. On the other hand, the
infrared sector cannot be treated perturbatively and requires a resummation of
the leading divergencies in the two-point function. This is analogous to what
is done in the Hard Thermal Loops resummation of finite temperature field
theory. Next-to-leading order corrections to the self-energy are computed,
resulting in contributions in the massless case, and
in the massive one.Comment: 4 pages, 3 figures. The resummation procedure is now discussed also
at finite ultraviolet cut-off. Minor changes in abstract and references.
Final version to be published in Physical Review Letter
Green-Schwarz Formulation of Self-Dual Superstring
The self-dual superstring has been described previously in a
Neveu-Schwarz-Ramond formulation with local N=2 or 4 world-sheet supersymmetry.
We present a Green-Schwarz-type formulation, with manifest spacetime
supersymmetry.Comment: 11 pg., (uuencoded dvi file) ITP-SB-92-5
Effective Action for the Quark-Meson Model
The scale dependence of an effective average action for mesons and quarks is
described by a nonperturbative flow equation. The running couplings lead to
spontaneous chiral symmetry breaking. We argue that for strong Yukawa coupling
between quarks and mesons the low momentum physics is essentially determined by
infrared fixed points. This allows us to establish relations between various
parameters related to the meson potential. The results for and
\VEV{\olpsi\psi} are not very sensitive to the poorly known details of the
quark--meson effective action at scales where the mesonic bound states form.
For realistic constituent quark masses we find around 100\MeV.Comment: 56 pages (including 10 figures and 1 table), uses epsf.st
- …
