1,038 research outputs found
First-principles, atomistic thermodynamics for oxidation catalysis
Present knowledge of the function of materials is largely based on studies
(experimental and theoretical) that are performed at low temperatures and
ultra-low pressures. However, the majority of everyday applications, like e.g.
catalysis, operate at atmospheric pressures and temperatures at or higher than
300 K. Here we employ ab initio, atomistic thermodynamics to construct a phase
diagram of surface structures in the (T,p)-space from ultra-high vacuum to
technically-relevant pressures and temperatures. We emphasize the value of such
phase diagrams as well as the importance of the reaction kinetics that may be
crucial e.g. close to phase boundaries.Comment: 4 pages including 2 figure files. Submitted to Phys. Rev. Lett.
Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
Morphological and statistical features of reaction zones in MILD and premixed combustion
Direct numerical simulation (DNS) results of turbulent MILD premixed and conventional
(undiluted) premixed combustion have been investigated to shed light on
the physical aspects of reaction zones and their morphology inMILD combustion.
Results of a premixed case are used for comparative analyses. The analyses show
that the regions with strong chemical activity in MILD combustion are distributed
over a substantial portion of the computational domain unlike in the premixed
case where these regions are confined to a small portion of the domain. Also,
interactions of reaction zones are observed in MILD combustion with their spatial
extent increasing with dilution level. These interactions give an appearance
of distributed combustion for MILD conditions. The morphology of these reaction
zones is investigated using the Minkowski functionals and shapefinders commonly
employed in cosmology. Predominant sheet-like structures are observed
for the premixed combustion case whereas a pancake-like structure is observed
as the most probable shape for the MILD cases. Spatial and statistical analyses
of various fluxes involved in a progress variable transport equation are conducted
to study autoignitive or propagative characteristics of MILD reaction zones. The
results suggest that there are local regions with autoignition, propagating-flames, and their coexistence for the conditions considered in this study. Typically, reaction
dominated or ignition front and propagating-flame dominated regions are
entangled for high dilution cases. Scalar gradient plays a strong role on whether
reaction or propagating-flame dominated activities are favoured locally.YM acknowledges the financial support of Nippon Keidanren and Cambridge
Overseas Trust. EPSRC support is acknowledged by NS. This work made use of
the facilities of HECToR, the UK’s national high-performance computing service,
which is provided by UoE HPCx Ltd at the University of Edinburgh, Cray Inc and
NAG Ltd, and funded by the Office of Science and Technology through EPSRCs
High End Computing Programme.This is the accepted manuscript. The final version is available from Elsevier at http://www.sciencedirect.com/science/article/pii/S001021801400128X
C4 olefin conversion on reduced nickel y faujasite. Evidence for C5 olefin formation via C4 olefin disproportionation
Switching the stereochemical outcome of 6-endo-trig cyclizations; Synthesis of 2,6-Cis-6-substituted 4-oxopipecolic acids
A base-mediated 6-endo-trig cyclization of
readily accessible enone-derived α-amino acids has been
developed for the direct synthesis of novel 2,6-cis-6-
substituted-4-oxo-L-pipecolic acids. A range of aliphatic and
aryl side chains were tolerated by this mild procedure to give
the target compounds in good overall yields. Molecular
modeling of the 6-endo-trig cyclization allowed some insight as
to how these compounds were formed, with the enolate
intermediate generated via an equilibrium process, followed by irreversible tautomerization/neutralization providing the driving force for product formation. Stereoselective reduction and deprotection of the resulting 2,6-cis-6-substituted 4-oxo-L-pipecolic acids to the corresponding 4-hydroxy-L-pipecolic acids was also performed
Effects of Turbulent Reynolds number on the displacement speed statistics in the Thin Reaction Zones regime turbulent premixed combustion
Shared neural representations of tactile roughness intensities by somatosensation and touch observation using an associative learning method
Previous human fMRI studies have reported activation of somatosensory areas not only during actual touch, but also during touch observation. However, it has remained unclear how the brain encodes visually evoked tactile intensities. Using an associative learning method, we investigated neural representations of roughness intensities evoked by (a) tactile explorations and (b) visual observation of tactile explorations. Moreover, we explored (c) modality-independent neural representations of roughness intensities using a cross-modal classification method. Case (a) showed significant decoding performance in the anterior cingulate cortex (ACC) and the supramarginal gyrus (SMG), while in the case (b), the bilateral posterior parietal cortices, the inferior occipital gyrus, and the primary motor cortex were identified. Case (c) observed shared neural activity patterns in the bilateral insula, the SMG, and the ACC. Interestingly, the insular cortices were identified only from the cross-modal classification, suggesting their potential role in modality-independent tactile processing. We further examined correlations of confusion patterns between behavioral and neural similarity matrices for each region. Significant correlations were found solely in the SMG, reflecting a close relationship between neural activities of SMG and roughness intensity perception. The present findings may deepen our understanding of the brain mechanisms underlying intensity perception of tactile roughness
Intersectional identities and dilemmas in interactions with health care professionals: An interpretative phenomenological analysis of British gay Muslim men
Individual interviews were conducted with six self-identified Muslim gay men living in London focusing on their experience of health service use. Transcripts were analysed using Interpretative Phenomenological Analysis. Analysis identified two major themes: namely, the close(d) community and self-management with health care professionals, detailing participants’ concerns regarding the risks of disclosing sexuality; and the authentic identity: “you’re either a Muslim or you’re gay, you can’t be both”, which delineated notions of incommensurate identity. Analysis highlights the need for health practitioners to have insight into the complexity of intersectional identities, identity disclosure dynamics, and the negative = consequences of assumptions made, be these heteronormative or faith-related
Composition, structure and stability of RuO_2(110) as a function of oxygen pressure
Using density-functional theory (DFT) we calculate the Gibbs free energy to
determine the lowest-energy structure of a RuO_2(110) surface in thermodynamic
equilibrium with an oxygen-rich environment. The traditionally assumed
stoichiometric termination is only found to be favorable at low oxygen chemical
potentials, i.e. low pressures and/or high temperatures. At realistic O
pressure, the surface is predicted to contain additional terminal O atoms.
Although this O excess defines a so-called polar surface, we show that the
prevalent ionic model, that dismisses such terminations on electrostatic
grounds, is of little validity for RuO_2(110). Together with analogous results
obtained previously at the (0001) surface of corundum-structured oxides, these
findings on (110) rutile indicate that the stability of non-stoichiometric
terminations is a more general phenomenon on transition metal oxide surfaces.Comment: 12 pages including 5 figures. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
The interactions of winds from massive young stellar objects: X-ray emission, dynamics, and cavity evolution
2D axis-symmetric hydrodynamical simulations are presented which explore the
interaction of stellar and disk winds with surrounding infalling cloud
material. The star, and its accompanying disk, blow winds inside a cavity
cleared out by an earlier jet. The collision of the winds with their
surroundings generates shock heated plasma which reaches temperatures up to
~10^8 K. Attenuated X-ray spectra are calculated from solving the equation of
radiative transfer along lines-of-sight. This process is repeated at various
epochs throughout the simulations to examine the evolution of the intrinsic and
attenuated flux. We find that the dynamic nature of the wind-cavity interaction
fuels intrinsic variability in the observed emission on timescales of several
hundred years. This is principally due to variations in the position of the
reverse shock which is influenced by changes in the shape of the cavity wall.
The collision of the winds with the cavity wall can cause clumps of cloud
material to be stripped away. Mixing of these clumps into the winds mass-loads
the flow and enhances the X-ray emission measure. The position and shape of the
reverse shock plays a key role in determining the strength and hardness of the
X-ray emission. In some models the reverse shock is oblique to much of the
stellar and disk outflows, whereas in others it is closely normal over a wide
range of polar angles. For reasonable stellar and disk wind parameters the
integrated count rate and spatial extent of the intensity peak for X-ray
emission agree with \textit{Chandra} observations of the deeply embedded MYSOs
S106 IRS4, Mon R2 IRS3 A, and AFGL 2591.(abridged)Comment: 19 pages, 14 figures, accepted for publication in MNRA
Recommended from our members
On the validity of Damköhler's first hypothesis in turbulent Bunsen burner flames: A computational analysis
The validity of Damköhler's first hypothesis, which relates the turbulent flame speed to turbulent flame surface area under the condition where the integral length scale of turbulence is greater than the flame thickness, has been assessed using three-dimensional Direct Numerical Simulations (DNS) of turbulent premixed Bunsen burner flames over a range of values of Reynolds number, pressure and turbulence intensity. It has been found for the Bunsen configuration that the proportionality between volume-integrated burning rate and the overall flame surface area is not strictly maintained according to Damköhler's first hypothesis. The discrepancy is found to originate physically from the local stretch rate dependence of displacement speed, and this helps to explain differences observed previously between flames with and without mean curvature. Approximating the local density-weighted flame propagation speed with the unstrained laminar burning velocity is shown to be inaccurate, and can have a significant influence on the prediction of the overall burning rate for flames with non-zero mean curvature. Using a two-dimensional projection of the actual scalar gradient for flame area evaluation is shown to exacerbate the loss of proportionality between volume-integrated burning rate and the overall flame surface area. The current analysis identifies the conditions under which Damköhler's hypothesis remains valid and the necessary correction for non-zero mean flame curvature. Further, it has been demonstrated that surface-weighted stretch effects on displacement speed need to be accounted for in order to ensure the validity of Damköhler's hypothesis under all circumstances. Finally, it has been found that the volume-integrated density-weighted scalar dissipation rate remains proportional to the overall burning rate for all flames considered here irrespective of the value of Reynolds number, pressure and turbulence intensity. However, this proportionality is lost when the scalar dissipation rate is evaluated using the two-dimensional projection of the actual scalar gradient
- …
