787 research outputs found
Climate change promotes parasitism in a coral symbiosis.
Coastal oceans are increasingly eutrophic, warm and acidic through the addition of anthropogenic nitrogen and carbon, respectively. Among the most sensitive taxa to these changes are scleractinian corals, which engineer the most biodiverse ecosystems on Earth. Corals' sensitivity is a consequence of their evolutionary investment in symbiosis with the dinoflagellate alga, Symbiodinium. Together, the coral holobiont has dominated oligotrophic tropical marine habitats. However, warming destabilizes this association and reduces coral fitness. It has been theorized that, when reefs become warm and eutrophic, mutualistic Symbiodinium sequester more resources for their own growth, thus parasitizing their hosts of nutrition. Here, we tested the hypothesis that sub-bleaching temperature and excess nitrogen promotes symbiont parasitism by measuring respiration (costs) and the assimilation and translocation of both carbon (energy) and nitrogen (growth; both benefits) within Orbicella faveolata hosting one of two Symbiodinium phylotypes using a dual stable isotope tracer incubation at ambient (26 °C) and sub-bleaching (31 °C) temperatures under elevated nitrate. Warming to 31 °C reduced holobiont net primary productivity (NPP) by 60% due to increased respiration which decreased host %carbon by 15% with no apparent cost to the symbiont. Concurrently, Symbiodinium carbon and nitrogen assimilation increased by 14 and 32%, respectively while increasing their mitotic index by 15%, whereas hosts did not gain a proportional increase in translocated photosynthates. We conclude that the disparity in benefits and costs to both partners is evidence of symbiont parasitism in the coral symbiosis and has major implications for the resilience of coral reefs under threat of global change
Passively Administered Pooled Human Immunoglobulins Exert IL-10 Dependent Anti-Inflammatory Effects that Protect against Fatal HSV Encephalitis
HSV-1 is the leading cause of sporadic encephalitis in humans. HSV infection of susceptible 129S6 mice results in fatal encephalitis (HSE) caused by massive inflammatory brainstem lesions comprising monocytes and neutrophils. During infection with pathogenic microorganisms or autoimmune disease, IgGs induce proinflammatory responses and recruit innate effector cells. In contrast, high dose intravenous immunoglobulins (IVIG) are an effective treatment for various autoimmune and inflammatory diseases because of potent anti-inflammatory effects stemming in part from sialylated IgGs (sIgG) present at 1–3% in IVIG. We investigated the ability of IVIG to prevent fatal HSE when given 24 h post infection. We discovered a novel anti-inflammatory pathway mediated by low-dose IVIG that protected 129S6 mice from fatal HSE by modulating CNS inflammation independently of HSV specific antibodies or sIgG. IVIG suppressed CNS infiltration by pathogenic CD11b+ Ly6Chigh monocytes and inhibited their spontaneous degranulation in vitro. FcγRIIb expression was required for IVIG mediated suppression of CNS infiltration by CD45+ Ly6Clow monocytes but not for inhibiting development of Ly6Chigh monocytes. IVIG increased accumulation of T cells in the CNS, and the non-sIgG fraction induced a dramatic expansion of FoxP3+ CD4+ T regulatory cells (Tregs) and FoxP3− ICOS+ CD4+ T cells in peripheral lymphoid organs. Tregs purified from HSV infected IVIG treated, but not control, mice protected adoptively transferred mice from fatal HSE. IL-10, produced by the ICOS+ CD4+ T cells that accumulated in the CNS of IVIG treated, but not control mice, was essential for induction of protective anti-inflammatory responses. Our results significantly enhance understanding of IVIG's anti-inflammatory and immunomodulatory capabilities by revealing a novel sIgG independent anti-inflammatory pathway responsible for induction of regulatory T cells that secrete the immunosuppressive cytokine IL-10 and further reveal the therapeutic potential of IVIG for treating viral induced inflammatory diseases
Electron-paramagnetic-resonance study of the microscopic structure of the Si(001)- SiO 2 interface
International audienc
Global warming and recurrent mass bleaching of corals
During 2015–2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs
Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef:Implications for symbiont shuffling
Reef corals form associations with an array of genetically and physiologically distinct endosymbionts from the genus Symbiodinium. Some corals harbor different clades of symbionts simultaneously, and over time the relative abundances of these clades may change through a process called symbiont shuffling. It is hypothesized that this process provides a mechanism for corals to respond to environmental threats such as global warming. However, only a minority of coral species have been found to harbor more than one symbiont clade simultaneously and the current view is that the potential for symbiont shuffling is limited. Using a newly developed real-time PCR assay, this paper demonstrates that previous studies have underestimated the presence of background symbionts because of the low sensitivity of the techniques used. The assay used here targets the multi-copy rDNA ITS1 region and is able to detect Symbiodinium clades C and D with > 100-fold higher sensitivity compared to conventional techniques. Technical considerations relating to intragenomic variation, estimating copy number and non-symbiotic contamination are discussed. Eighty-two colonies from four common scleractinian species (Acropora millepora, Acropora tenuis, Stylophora pistillata and Turbinaria reniformis) and 11 locations on the Great Barrier Reef were tested for background Symbiodinium clades. Although these colonies had been previously identified as harboring only a single clade based on SSCP analyses, background clades were detected in 78% of the samples, indicating that the potential for symbiont shuffling may be much larger than currently thought
Prefrontal cortex activation and young driver behaviour: a fNIRS study
Road traffic accidents consistently show a significant over-representation for young, novice and particularly male drivers. This research examines the prefrontal cortex activation of young drivers and the changes in activation associated with manipulations of mental workload and inhibitory control. It also considers the explanation that a lack of prefrontal cortex maturation is a contributing factor to the higher accident risk in this young driver population. The prefrontal cortex is associated with a number of factors including mental workload and inhibitory control, both of which are also related to road traffic accidents. This experiment used functional near infrared spectroscopy to measure prefrontal cortex activity during five simulated driving tasks: one following task and four overtaking tasks at varying traffic densities which aimed to dissociate workload and inhibitory control. Age, experience and gender were controlled for throughout the experiment. The results showed that younger drivers had reduced prefrontal cortex activity compared to older drivers. When both mental workload and inhibitory control increased prefrontal cortex activity also increased, however when inhibitory control alone increased there were no changes in activity. Along with an increase in activity during overtaking manoeuvres, these results suggest that prefrontal cortex activation is more indicative of workload in the current task. There were no differences in the number of overtakes completed by younger and older drivers but males overtook significantly more than females. We conclude that prefrontal cortex activity is associated with the mental workload required for overtaking. We additionally suggest that the reduced activation in younger drivers may be related to a lack of prefrontal maturation which could contribute to the increased crash risk seen in this population
Conception et évaluation d’ateliers de formation visant à développer un comportement préventif au travail chez les élèves en apprentissage d’un métier
Parameter estimation for biochemical reaction networks using Wasserstein distances
We present a method for estimating parameters in stochastic models of
biochemical reaction networks by fitting steady-state distributions using
Wasserstein distances. We simulate a reaction network at different parameter
settings and train a Gaussian process to learn the Wasserstein distance between
observations and the simulator output for all parameters. We then use Bayesian
optimization to find parameters minimizing this distance based on the trained
Gaussian process. The effectiveness of our method is demonstrated on the
three-stage model of gene expression and a genetic feedback loop for which
moment-based methods are known to perform poorly. Our method is applicable to
any simulator model of stochastic reaction networks, including Brownian
Dynamics.Comment: 22 pages, 8 figures. Slight modifications/additions to the text;
added new section (Section 4.4) and Appendi
North Flinders Reef (Coral Sea, Australia) Porites sp. corals as a candidate Global Boundary Stratotype Section and Point for the Anthropocene Series
Corals are unique in the suite of proposed Anthropocene Global Boundary Stratotype Section and Point (GSSP) archives, as living organisms that produce aragonite exoskeletons preserved in the geological record that contain highly accurate and precise (<±1 year) internal chronologies. The GSSP candidate site North Flinders Reef in the Coral Sea (Australia) is an offshore oceanic reef, and therefore less vulnerable to local human influences than those closer to the coast. Here, we present geochemical records from two Porites sp. corals sampled at an annual to pluri-annual (i.e. 3–5 years) resolution that shows clear global and regional human impacts. Atmospheric nuclear bomb testing by-products (14C,239+240Pu) show a clear increase in the Flinders Reef corals coincident with well-dated nuclear testing operations. By contrast, the radionuclides 241Am and 137Cs are present at low or undetectable levels, as are spheroidal carbonaceous fly-ash particles. Coral δ13C shows centennial variability likely influenced by growth effects in the 18th century and with a progression to lower values starting in 1880 and accelerating post-1970. The latter may be related to the Suess Effect resulting from 13C-depleted fossil fuel burning. Coral δ15N decreased between 1710 and 1954 with a reversal post-1954. Coral temperature proxies indicate prominent centennial variability with equally warm conditions in the 18th and end of 20th century. However, the exact mechanisms responsible for the mid-20th century changes in these parameters need to be scrutinised in further detail. Plain Language summary: This work proposes a candidate natural archive for the official marker of the Anthropocene that geologists will use to mark this important interval in time. Our candidate is a live coral from North Flinders Reef in the Coral Sea (Australia), located 150 km east of the Great Barrier Reef, a location that is remote from direct local human influences. Corals are a unique archive of tropical ocean change because they incorporate the geochemical signature from seawater into their limestone skeleton during their long life-spans. Here we investigated a number of geochemical markers in yearly growth layers of the corals to define several markers for the Anthropocene based on changes in temperature, water chemistry, chemicals from pollution and fertilisers, radioactive products from nuclear bomb testing, and by-products from burning fossil fuels. We have detected clear human influences in several of these markers
- …
