221 research outputs found

    Neural response to the observable self in social anxiety disorder

    Get PDF
    Background: Distorted images of the observable self are considered crucial in the development and maintenance of social anxiety. We generated an experimental situation in which participants viewed themselves from an observer's perspective when exposed to scrutiny and evaluation by others. Method: Twenty patients with social anxiety disorder (SAD) and 20 control subjects were assessed using functional magnetic resonance imaging (fMRI) during the public exposure of pre-recorded videos in which they were each shown performing a verbal task. The examiners acted as the audience in the experiment and rated performance. Whole-brain functional maps were computed using Statistical Parametric Mapping. Results: Robust activation was observed in regions related to self-face recognition, emotional response and general arousal in both study groups. Patients showed significantly greater activation only in the primary visual cortex. By contrast, they showed significant deactivation or smaller activation in dorsal frontoparietal and anterior cingulate cortices relevant to the cognitive control of negative emotion. Task-related anxiety ratings revealed a pattern of negative correlation with activation in this frontoparietal/cingulate network. Importantly, the relationship between social anxiety scores and neural response showed an inverted-U function with positive correlations in the lower score range and negative correlations in the higher range. Conclusions: Our findings suggest that exposure to scrutiny and evaluation in SAD may be associated with changes in cortical systems mediating the cognitive components of anxiety. Disorder severity seems to be relevant in shaping the neural response pattern, which is distinctively characterized by a reduced cortical response in the most severe cases

    Brain structural alterations in obsessive-compulsive disorder patients with autogenous and reactive obsessions

    Get PDF
    Obsessive-compulsive disorder (OCD) is a clinically heterogeneous condition. Although structural brain alterations have been consistently reported in OCD, their interaction with particular clinical subtypes deserves further examination. Among other approaches, a two-group classification in patients with autogenous and reactive obsessions has been proposed. The purpose of the present study was to assess, by means of a voxel-based morphometry analysis, the putative brain structural correlates of this classification scheme in OCD patients. Ninety-five OCD patients and 95 healthy controls were recruited. Patients were divided into autogenous (n = 30) and reactive (n = 65) sub-groups. A structural magnetic resonance image was acquired for each participant and pre-processed with SPM8 software to obtain a volume-modulated gray matter map. Whole-brain and voxel-wise comparisons between the study groups were then performed. In comparison to the autogenous group, reactive patients showed larger gray matter volumes in the right Rolandic operculum. When compared to healthy controls, reactive patients showed larger volumes in the putamen (bilaterally), while autogenous patients showed a smaller left anterior temporal lobe. Also in comparison to healthy controls, the right middle temporal gyrus was smaller in both patient subgroups. Our results suggest that autogenous and reactive obsessions depend on partially dissimilar neural substrates. Our findings provide some neurobiological support for this classification scheme and contribute to unraveling the neurobiological basis of clinical heterogeneity in OCD

    Removing and reimplanting deep brain stimulation therapy devices in resistant OCD (when the patient does not respond): case report

    Get PDF
    Background: Deep brain stimulation (DBS) is emerging as a promising tool in the treatment of refractory obsessive-compulsive disorder (OCD) but the search for the best target still continues. This issue is especially relevant when particularly resistant profiles are observed in some patients, which have been ascribed to individual responses to DBS according to differential patterns of connectivity. As patients have been implanted, new dilemmas have emerged, such as what to do when the patient does not respond to surgery. Case presentation: Here we describe a 22-year-old male with extremely severe OCD who did not respond to treatment with DBS in the nucleus accumbens, but who did respond after explanting and reimplanting leads targeting the ventral capsule-ventral striatum region. Information regarding the position of the electrodes for both surgeries is provided and possible brain structures affected during stimulation are reviewed. To our knowledge this case is the first in the literature reporting the removal and reimplantation of DBS leads for therapeutical benefits in a patient affected by a mental disorder. Conclusion: The capability for explantation and reimplantation of leads should be considered as part of the DBS therapy reversibility profile in resistant mental disorders, as it allows application in cases of non-response to the first surgery

    Task-induced deactivation from rest extends beyond the default mode brain network

    Get PDF
    Activity decreases, or deactivations, of midline and parietal cortical brain regions are routinely observed in human functional neuroimaging studies that compare periods of task-based cognitive performance with passive states, such as rest. It is now widely held that such task-induced deactivations index a highly organized"default-mode network" (DMN): a large-scale brain system whose discovery has had broad implications in the study of human brain function and behavior. In this work, we show that common task-induced deactivations from rest also occur outside of the DMN as a function of increased task demand. Fifty healthy adult subjects performed two distinct functional magnetic resonance imaging tasks that were designed to reliably map deactivations from a resting baseline. As primary findings, increases in task demand consistently modulated the regional anatomy of DMN deactivation. At high levels of task demand, robust deactivation was observed in non-DMN regions, most notably, the posterior insular cortex. Deactivation of this region was directly implicated in a performance-based analysis of experienced task difficulty. Together, these findings suggest that task-induced deactivations from rest are not limited to the DMN and extend to brain regions typically associated with integrative sensory and interoceptive processes

    Structural covariance of neostriatal and limbic regions in patients with obsessive-compulsive disorder

    Get PDF
    Background: Frontostriatal and frontoamygdalar connectivity alterations in patients with obsessive-compulsive disorder (OCD) have been typically described in functional neuroimaging studies. However, structural covariance, or volumetric correlations across distant brain regions, also provides network-level information. Altered structural covariance has been described in patients with different psychiatric disorders, including OCD, but to our knowledge, alterations within frontostriatal and frontoamygdalar circuits have not been explored. Methods: We performed a mega-analysis pooling structural MRI scans from the Obsessive-compulsive Brain Imaging Consortium and assessed whole-brain voxel-wise structural covariance of 4 striatal regions (dorsal and ventral caudate nucleus, and dorsal-caudal and ventral-rostral putamen) and 2 amygdalar nuclei (basolateral and centromedial-superficial). Images were preprocessed with the standard pipeline of voxel-based morphometry studies using Statistical Parametric Mapping software. Results: Our analyses involved 329 patients with OCD and 316 healthy controls. Patients showed increased structural covariance between the left ventral-rostral putamen and the left inferior frontal gyrus/frontal operculum region. This finding had a significant interaction with age; the association held only in the subgroup of older participants. Patients with OCD also showed increased structural covariance between the right centromedial-superficial amygdala and the ventromedial prefrontal cortex. Limitations: This was a cross-sectional study. Because this is a multisite data set analysis, participant recruitment and image acquisition were performed in different centres. Most patients were taking medication, and treatment protocols differed across centres. Conclusion: Our results provide evidence for structural network-level alterations in patients with OCD involving 2 frontosubcortical circuits of relevance for the disorder and indicate that structural covariance contributes to fully characterizing brain alterations in patients with psychiatric disorders

    A multimetric systematic review of fMRI findings in patients with MDD receiving ECT

    Full text link
    Background: Electroconvulsive therapy (ECT) is considered the most effective treatment for major depressive disorder (MDD). In recent years, the pursuit of the neurobiological mechanisms of ECT action has generated a significant amount of functional magnetic resonance imaging (fMRI) research. Objective: In this systematic review, we integrated all fMRI research in patients with MDD receiving ECT and, importantly, evaluated the level of convergence and replicability across multiple fMRI metrics. Results: While according to most studies changes in patients with MDD after ECT appear to be widely distributed across the brain, our multimetric review revealed specific changes involving functional connectivity increases in the superior and middle frontal gyri as the most replicated and across-modality convergent findings. Although this modulation of prefrontal connectivity was associated to ECT outcome, we also identified fMRI measurements of the subgenual anterior cingulate cortex as the fMRI signals most significantly linked to clinical response. Conclusion: We identified specific prefrontal and cingulate territories which activity and connectivity with other brain regions is modulated by ECT, critically accounting for its mechanism of action

    Glial Cell Line-Derived Neurotrophic Factor (GDNF) as a Novel Candidate Gene of Anxiety.

    Get PDF
    Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor for dopaminergic neurons with promising therapeutic potential in Parkinson's disease. A few association analyses between GDNF gene polymorphisms and psychiatric disorders such as schizophrenia, attention deficit hyperactivity disorder and drug abuse have also been published but little is known about any effects of these polymorphisms on mood characteristics such as anxiety and depression. Here we present an association study between eight (rs1981844, rs3812047, rs3096140, rs2973041, rs2910702, rs1549250, rs2973050 and rs11111) GDNF single nucleotide polymorphisms (SNPs) and anxiety and depression scores measured by the Hospital Anxiety and Depression Scale (HADS) on 708 Caucasian young adults with no psychiatric history. Results of the allele-wise single marker association analyses provided significant effects of two single nucleotide polymorphisms on anxiety scores following the Bonferroni correction for multiple testing (p = 0.00070 and p = 0.00138 for rs3812047 and rs3096140, respectively), while no such result was obtained on depression scores. Haplotype analysis confirmed the role of these SNPs; mean anxiety scores raised according to the number of risk alleles present in the haplotypes (p = 0.00029). A significant sex-gene interaction was also observed since the effect of the rs3812047 A allele as a risk factor of anxiety was more pronounced in males. In conclusion, this is the first demonstration of a significant association between the GDNF gene and mood characteristics demonstrated by the association of two SNPs of the GDNF gene (rs3812047 and rs3096140) and individual variability of anxiety using self-report data from a non-clinical sample

    Moving from serotonin to serotonin-norepinephrine enhancement with increasing venlafaxine dose: clinical implications and strategies for a successful outcome in major depressive disorder

    Get PDF
    IntroductionMental health disorders, especially depressive and anxiety disorders, are associated with substantial health-related burden. While the second-generation antidepressants are widely accepted as first-line pharmacological treatment for major depressive disorder (MDD), patient response to such treatment is variable, with more than half failing to achieve complete remission, and residual symptoms are frequently present.Areas coveredHere, the pharmacodynamics of venlafaxine XR are reviewed in relation to its role as both a selective serotonin reuptake inhibitor (SSRI) and a serotonin-norepinephrine-reuptake inhibitor (SNRI), and we look at how these pharmacodynamic properties can be harnessed to guide clinical practice, asking the question 'is it possible to develop a symptom-cluster-based approach to the treatment of MDD with comorbid anxiety utilizing venlafaxine XR?.' Additionally, three illustrative clinical cases provide practical examples of the utility of venlafaxine-XR in real-world clinical practice. The place of venlafaxine XR in managing fatigue/low energy, a frequent residual symptom in MDD, is explored using pooled data from clinical trials of venlafaxine XR.Expert opinionVenlafaxine XR should be considered as a first-line treatment for MDD with or without comorbid anxiety, and there are clear pharmacodynamic signals supporting a symptom cluster-based treatment paradigm for venlafaxine XR

    Glucocorticoid-based pharmacotherapies preventing PTSD

    Get PDF
    Altres ajuts: Swiss National Science Foundation (SNSF) [NCCR Synapsy grant: 51NF40-158776 and − 185897]Posttraumatic stress disorder (PTSD) is a highly disabling psychiatric condition that may arise after exposure to acute and severe trauma. It is a highly prevalent mental disorder worldwide, and the current treatment options for these patients remain limited due to low effectiveness. The time window right after traumatic events provides clinicians with a unique opportunity for preventive interventions against potential deleterious alterations in brain function that lead to PTSD. Some studies pointed out that PTSD patients present an abnormal function of the hypothalamic-pituitary-adrenal axis that may contribute to a vulnerability toward PTSD. Moreover, glucocorticoids have arisen as a promising option for preventing the disorder's development when administered in the aftermath of trauma. The present work compiles the recent findings of glucocorticoid administration for the prevention of a PTSD phenotype, from human studies to animal models of PTSD. Overall, glucocorticoid-based therapies for preventing PTSD demonstrated moderate evidence in terms of efficacy in both clinical and preclinical studies. Although clinical studies point out that glucocorticoids may not be effective for all patients' subpopulations, those with adequate traits might greatly benefit from them. Preclinical studies provide precise insight into the mechanisms mediating this preventive effect, showing glucocorticoid-based prevention to reduce long-lasting behavioral and neurobiological abnormalities caused by traumatic stress. However, further research is needed to delineate the precise mechanisms and the extent to which these interventions can translate into lower PTSD rates and morbidity

    Brain Structural Correlates of Emotion Recognition in Psychopaths

    Get PDF
    Individuals with psychopathy present deficits in the recognition of facial emotional expressions. However, the nature and extent of these alterations are not fully understood. Furthermore, available data on the functional neural correlates of emotional face recognition deficits in adult psychopaths have provided mixed results. In this context, emotional face morphing tasks may be suitable for clarifying mild and emotion-specific impairments in psychopaths. Likewise, studies exploring corresponding anatomical correlates may be useful for disentangling available neurofunctional evidence based on the alleged neurodevelopmental roots of psychopathic traits.We used Voxel-Based Morphometry and a morphed emotional face expression recognition task to evaluate the relationship between regional gray matter (GM) volumes and facial emotion recognition deficits in male psychopaths. In comparison to male healthy controls, psychopaths showed deficits in the recognition of sad, happy and fear emotional expressions. In subsequent brain imaging analyses psychopaths with better recognition of facial emotional expressions showed higher volume in the prefrontal cortex (orbitofrontal, inferior frontal and dorsomedial prefrontal cortices), somatosensory cortex, anterior insula, cingulate cortex and the posterior lobe of the cerebellum. Amygdala and temporal lobe volumes contributed to better emotional face recognition in controls only. These findings provide evidence suggesting that variability in brain morphometry plays a role in accounting for psychopaths' impaired ability to recognize emotional face expressions, and may have implications for comprehensively characterizing the empathy and social cognition dysfunctions typically observed in this population of subjects
    corecore