297 research outputs found

    Dark solitons, modulation instability and breathers in a chain of weakly non-linear oscillators with cyclic symmetry

    Full text link
    In the aerospace industry the trend for light-weight structures and the resulting complex dynamic behaviours currently challenge vibration engineers. In many cases, these light-weight structures deviate from linear behaviour, and complex nonlinear phenomena can be expected. We consider a cyclically symmetric system of coupled weakly nonlinear undamped oscillators that could be considered a minimal model for different cyclic and symmetric aerospace structures experiencing large deformations. The focus is on localised vibrations that arise from wave envelope modulation of travelling waves. For the defocussing parameter range of the approximative nonlinear evolution equation, we show the possible existence of dark solitons and discuss their characteristics. For the focussing parameter range, we characterise modulation instability and illustrate corresponding nonlinear breather dynamics. Furthermore, we show that for stronger nonlinearity or randomness in initial conditions, transient breather-type dynamics and decay into bright solitons appear. The findings suggest that significant vibration localisation may arise due to mechanisms of nonlinear modulation dynamics

    Super rogue waves in simulations based on weakly nonlinear and fully nonlinear hydrodynamic equations

    Get PDF
    The rogue wave solutions (rational multi-breathers) of the nonlinear Schrodinger equation (NLS) are tested in numerical simulations of weakly nonlinear and fully nonlinear hydrodynamic equations. Only the lowest order solutions from 1 to 5 are considered. A higher accuracy of wave propagation in space is reached using the modified NLS equation (MNLS) also known as the Dysthe equation. This numerical modelling allowed us to directly compare simulations with recent results of laboratory measurements in \cite{Chabchoub2012c}. In order to achieve even higher physical accuracy, we employed fully nonlinear simulations of potential Euler equations. These simulations provided us with basic characteristics of long time evolution of rational solutions of the NLS equation in the case of near breaking conditions. The analytic NLS solutions are found to describe the actual wave dynamics of steep waves reasonably well.Comment: under revision in Physical Review

    Rogue Waves: From Nonlinear Schrödinger Breather Solutions to Sea-Keeping Test

    Get PDF
    Under suitable assumptions, the nonlinear dynamics of surface gravity waves can be modeled by the one-dimensional nonlinear Schrödinger equation. Besides traveling wave solutions like solitons, this model admits also breather solutions that are now considered as prototypes of rogue waves in ocean. We propose a novel technique to study the interaction between waves and ships/structures during extreme ocean conditions using such breather solutions. In particular, we discuss a state of the art sea-keeping test in a 90-meter long wave tank by creating a Peregrine breather solution hitting a scaled chemical tanker and we discuss its potential devastating effects on the ship

    Spectral up- and downshifting of Akhmediev breathers under wind forcing

    Full text link
    We experimentally and numerically investigate the effect of wind forcing on the spectral dynamics of Akhmediev breathers, a wave-type known to model the modulation instability. We develop the wind model to the same order in steepness as the higher order modifcation of the nonlinear Schroedinger equation, also referred to as the Dysthe equation. This results in an asymmetric wind term in the higher order, in addition to the leading order wind forcing term. The derived model is in good agreement with laboratory experiments within the range of the facility's length. We show that the leading order forcing term amplifies all frequencies equally and therefore induces only a broadening of the spectrum while the asymmetric higher order term in the model enhances higher frequencies more than lower ones. Thus, the latter term induces a permanent upshift of the spectral mean. On the other hand, in contrast to the direct effect of wind forcing, wind can indirectly lead to frequency downshifts, due to dissipative effects such as wave breaking, or through amplification of the intrinsic spectral asymmetry of the Dysthe equation. Furthermore, the definitions of the up- and downshift in terms of peak- and mean frequencies, that are critical to relate our work to previous results, are highlighted and discussed.Comment: 30 pages, 11 figure

    Experiments on wind-perturbed rogue wave hydrodynamics using the Peregrine breather model

    No full text
    International audienceBeing considered as a prototype for description of oceanic rogue waves (RWs), the Peregrine breather solution of the nonlinear Schrodinger equation (NLS) has been recently observed and intensely investigated experimentally in particular within the context of water waves. Here, we report the experimental results showing the evolution of the Peregrine solution in the presence of wind forcing in the direction of wave propagation. The results show the persistence of the breather evolution dynamics even in the presence of strong wind and chaotic wave eld generated by it. Furthermore, we have shown that characteristic spectrum of the Peregrine breather persists even at the highest values of the generated wind velocities thus making it a viable characteristic for prediction of rogue waves

    Hydrodynamic Supercontinuum

    Get PDF
    We demonstrate experimentally multi-bound-soliton solutions of the Nonlinear Schr\"odinger equation (NLS) in the context of surface gravity waves. In particular, the Satsuma-Yajima N-soliton solution with N=2,3,4 is investigated in detail. Such solutions, also known as breathers on zero background, lead to periodic self-focussing in the wave group dynamics, and the consequent generation of a steep localized carrier wave underneath the group envelope. Our experimental results are compared with predictions from the NLS for low steepness initial conditions where wave-breaking does not occur, with very good agreement. We also show the first detailed experimental study of irreversible massive spectral broadening of the water wave spectrum, which we refer to by analogy with optics as the first controlled observation of hydrodynamic supercontinuum a process which is shown to be associated with the fission of the initial multi-soliton bound state into individual fundamental solitons similar to what has been observe in optics

    Experiments on wind-perturbed rogue wave hydrodynamics using the Peregrine breather model

    Get PDF
    Being considered as a prototype for description of oceanic rogue waves, the Peregrine breather solution of the nonlinear Schrödinger equation has been recently observed and intensely investigated experimentally in particular within the context of water

    Hydrodynamic supercontinuum

    Get PDF
    We report the experimental observation of multi-bound-soliton solutions of the nonlinear Schrödinger equation (NLS) in the context of hydrodynamic surface gravity waves. Higher-order N-soliton solutions with N=2, 3 are studied in detail and shown to be
    corecore