391 research outputs found
A doublet microlens array for imaging micron-sized objects
We present a high-numerical aperture, doublet microlens array for imaging micron-sized objects. The proposed doublet architecture consists of glass microspheres trapped on a predefined array of silicon microholes and covered with a thin polymer layer. A standard silicon microfabrication process and a novel fluidic assembly technique were combined to obtain an array of 56 µm diameter microlenses with a numerical aperture of ~0.5. Using such an array, we demonstrated brightfield and fluorescent image formation of objects directly on a CCD sensor without the use of intermediate lenses. The proposed technology is a significant advancement toward the unmet need of inexpensive, miniaturized optical modules which can be further integrated with lab-on-chip microfluidic devices and photonic chips for a variety of high-end imaging/detection applications.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90795/1/0960-1317_21_10_105024.pd
Towards Improved Forecasts of Atmospheric and Oceanic Circulations over the Complex Terrain of the Eastern Mediterranean
Forecasting atmospheric and oceanic circulations accurately over the Eastern Mediterranean has proved to be an exceptional challenge. The existence of fine-scale topographic variability (land/sea coverage) and seasonal dynamics variations can create strong spatial gradients in temperature, wind and other state variables, which numerical models may have difficulty capturing. The Hellenic Center for Marine Research (HCMR) is one of the main operational centers for wave forecasting in the eastern Mediterranean. Currently, HCMR's operational numerical weather/ocean prediction model is based on the coupled Eta/Princeton Ocean Model (POM). Since 1999, HCMR has also operated the POSEIDON floating buoys as a means of state-of-the-art, real-time observations of several oceanic and surface atmospheric variables. This study attempts a first assessment at improving both atmospheric and oceanic prediction by initializing a regional Numerical Weather Prediction (NWP) model with high-resolution sea surface temperatures (SST) from remotely sensed platforms in order to capture the small-scale characteristics
Chinese heritage tourists to heritage sites: what are the effects of heritage motivation and perceived authenticity on satisfaction?
Much of the literature on authenticity is Western-centric, while little work addresses the concept in the Asian environment. The literature relating to authenticity from Asian tourists’ point of view is even underdeveloped. This study therefore aims to fill the knowledge gap by investigating Chinese tourists’ perspective of authenticity. It also examines tourists’ perceived authenticity as a multi-dimensional construct in a consumer-based model, the relationship with heritage motivation and tourist satisfaction. Findings indicate that Chinese tourists’ perceptions of authenticity are closely related to objective and constructive authenticity. The study demonstrates that heritage motivation has a significant positive influence on perceived authenticity and that perceived authenticity has a strong ability to predict tourist satisfaction
Neural Architecture of Hunger-Dependent Multisensory Decision Making in C. elegans
Little is known about how animals integrate multiple sensory inputs in natural environments to balance avoidance of danger with approach to things of value. Furthermore, the mechanistic link between internal physiological state and threat-reward decision making remains poorly understood. Here we confronted C. elegans worms with the decision whether to cross a hyperosmotic barrier presenting the threat of desiccation to reach a source of food odor. We identified a specific interneuron that controls this decision via top-down extrasynaptic aminergic potentiation of the primary osmosensory neurons to increase their sensitivity to the barrier. We also establish that food deprivation increases the worm's willingness to cross the dangerous barrier by suppressing this pathway. These studies reveal a potentially general neural circuit architecture for internal state control of threat-reward decision making
A microfluidics-based method for measuring neuronal activity in Drosophila chemosensory neurons
Monitoring neuronal responses to defined sensory stimuli is a powerful and widely used approach for understanding sensory coding in the nervous system. However, providing precise, stereotypic and reproducible cues while concomitantly recording neuronal activity remains technically challenging. Here we describe the fabrication and use of a microfluidics system that allows precise temporally restricted stimulation of Drosophila chemosensory neurons with an array of different chemical cues. The system can easily be combined with genetically encoded calcium sensors, and it can measure neuronal activity at single-cell resolution in larval sense organs and in the proboscis or leg of the adult fly. We describe the design of the master mold, the production of the microfluidic chip and live imaging using the calcium sensor GCaMP, expressed in distinct types of Drosophila chemosensory neurons. Fabrication of the master mold and microfluidic chips requires basic skills in photolithography and takes ~2 weeks; the same devices can be used repeatedly over several months. Flies can be prepared for measurements in minutes and imaged for up to 1 h
Probing the physiology of ASH neuron in Caenorhabditis elegans using electric current stimulation
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98694/1/ApplPhysLett_99_053702.pd
Girls' disruptive behavior and its relationship to family functioning: A review
Although a number of reviews of gender differences in disruptive behavior and parental socialization exist, we extend this literature by addressing the question of differential development among girls and by placing both disruptive behavior and parenting behavior in a developmental framework. Clarifying the heterogeneity of development in girls is important for developing and optimizing gender-specific prevention and treatment programs. In the current review, we describe the unique aspects of the development of disruptive behavior in girls and explore how the gender-specific development of disruptive behavior can be explained by family linked risk and protective processes. Based on this review, we formulate a gender-specific reciprocal model of the influence of social factors on the development of disruptive behavior in girls in order to steer further research and better inform prevention and treatment programs
Recommended from our members
Energetic particle influence on the Earth's atmosphere
This manuscript gives an up-to-date and comprehensive overview of the effects of energetic particle precipitation (EPP) onto the whole atmosphere, from the lower thermosphere/mesosphere through the stratosphere and troposphere, to the surface. The paper summarizes the different sources and energies of particles, principally
galactic cosmic rays (GCRs), solar energetic particles (SEPs) and energetic electron precipitation (EEP). All the proposed mechanisms by which EPP can affect the atmosphere
are discussed, including chemical changes in the upper atmosphere and lower thermosphere, chemistry-dynamics feedbacks, the global electric circuit and cloud formation. The role of energetic particles in Earth’s atmosphere is a multi-disciplinary problem that requires expertise from a range of scientific backgrounds. To assist with this synergy, summary tables are provided, which are intended to evaluate the level of current knowledge of the effects of energetic particles on processes in the entire atmosphere
Microscopic Optical Projection Tomography In Vivo
We describe a versatile optical projection tomography system for rapid three-dimensional imaging of microscopic specimens in vivo. Our tomographic setup eliminates the in xy and z strongly asymmetric resolution, resulting from optical sectioning in conventional confocal microscopy. It allows for robust, high resolution fluorescence as well as absorption imaging of live transparent invertebrate animals such as C. elegans. This system offers considerable advantages over currently available methods when imaging dynamic developmental processes and animal ageing; it permits monitoring of spatio-temporal gene expression and anatomical alterations with single-cell resolution, it utilizes both fluorescence and absorption as a source of contrast, and is easily adaptable for a range of small model organisms
A Microscope Automated Fluidic System to Study Bacterial Processes in Real Time
Most time lapse microscopy experiments studying bacterial processes ie growth, progression through the cell cycle and motility have been performed on thin nutrient agar pads. An important limitation of this approach is that dynamic perturbations of the experimental conditions cannot be easily performed. In eukaryotic cell biology, fluidic approaches have been largely used to study the impact of rapid environmental perturbations on live cells and in real time. However, all these approaches are not easily applicable to bacterial cells because the substrata are in all cases specific and also because microfluidics nanotechnology requires a complex lithography for the study of micrometer sized bacterial cells. In fact, in many cases agar is the experimental solid substratum on which bacteria can move or even grow. For these reasons, we designed a novel hybrid micro fluidic device that combines a thin agar pad and a custom flow chamber. By studying several examples, we show that this system allows real time analysis of a broad array of biological processes such as growth, development and motility. Thus, the flow chamber system will be an essential tool to study any process that take place on an agar surface at the single cell level
- …
