9 research outputs found
Nonminimal Supersymmetric Standard Model with Baryon and Lepton Number Violation
We carry out a comprehensive analysis of the nonminimal supersymmetric
standard model (NMSSM) with baryon and lepton number violation. We catalogue
the baryon and lepton number violating dimension four and five operators of the
model. We then study the renormalization group evolution and infrared stable
fixed points of the Yukawa couplings and the soft supersymmetry breaking
trilinear couplings of this model with baryon and lepton number (and R-parity)
violation involving the heaviest generations. We show analytically that in the
Yukawa sector of the NMSSM there is only one infrared stable fixed point. This
corresponds to a non-trivial fixed point for the top-, bottom-quark Yukawa
couplings and the violating coupling , and a trivial one
for all other couplings. All other possible fixed points are either unphysical
or unstable in the infrared region. We also carry out an analysis of the
renormalization group equations for the soft supersymmetry breaking trilinear
couplings, and determine the corresponding fixed points for these couplings. We
then study the quasi-fixed point behaviour, both of the third generation Yukawa
couplings and the baryon number violating coupling, and those of the soft
supersymmetry breaking trilinear couplings. From the analysis of the fixed
point behaviour, we obtain upper and lower bounds on the baryon number
violating coupling , as well as on the soft supersymmetry
breaking trilinear couplings. Our analysis shows that the infrared fixed point
behavior of NMSSM with baryon and lepton number violation is similar to that of
MSSM.Comment: 35 pages, Revtex, 6 eps fig
Infrared Fixed Point Structure in Minimal Supersymmetric Standard Model with Baryon and Lepton Number Violation
We study in detail the renomalization group evolution of Yukawa couplings and
soft supersymmetry breaking trilinear couplings in the minimal supersymmetric
standard model with baryon and lepton number violation. We obtain the exact
solutions of these equations in a closed form, and then depict the infrared
fixed point structure of the third generation Yukawa couplings and the highest
generation baryon and lepton number violating couplings. Approximate analytical
solutions for these Yukawa couplings and baryon and lepton number violating
couplings, and the soft supersymmetry breaking couplings are obtained in terms
of their initial values at the unification scale. We then numerically study the
infrared fixed surfaces of the model, and illustrate the approach to the fixed
points.Comment: 16 pages REVTeX, figures embedded as epsfigs, replaced with version
to appear in Physical Review D, minor typographical errors eliminated and
references reordered, figures correcte
Neutralino Dark Matter, b-tau Yukawa Unification and Non-Universal Sfermion Masses
We study the implications of minimal non-Universal Boundary Conditions in the
sfermion Soft SUSY Breaking (SSB) masses of mSUGRA. We impose asymptotic b-tau
Yukawa coupling Unification and we resort to a parameterization of the
deviation from Universality in the SSB motivated by the multiplet structure of
SU(5) GUT. A set of cosmo-phenomenological constraints, including the recent
results from WMAP, determines the allowed parameter space of the models under
consideration. We highlight a new coannihilation corridor where
neutralino-sbottom and neutralino-tau sneutrino-stau coannihilations
significantly contribute to the reduction of the neutralino relic density.Comment: 38 pages, 27 Figures, Latex; Version accepted for publication in PR
Urban metabolism planning and designing approaches between quantitative analysis and urban landscape
The challenging paradigm of interrelated energy systems towards a more sustainable future
This paper brings together several contemporary topics in energy systems aiming to provide a literature review based reflection on how several interrelated energy systems can contribute together to a more sustainable world. Some directions are discussed, such as the improvement of the energy efficiency and environmental performance of systems, the development of new technologies, the increase of the use of renewable energy sources, the promotion of holistic and multidisciplinary studies, and the implementation of new management rules and "eco-friendly and sustainable" oriented policies at different scales. The interrelations of the diverse energy systems are also discussed in order to address their main social, economic and environmental impacts. The subjects covered include the assessment of the electricity market and its main players (demand, supply, distribution), the evaluation of urban systems (buildings, transportation, commuting), the analysis of the implementation of renewable energy cooperatives, the discussion of the diffusion of the electric vehicle and the importance of new bioenergy systems. This paper also presents relevant research carried out in the framework of the Energy for Sustainability (EfS) Initiative of the University of Coimbra, linking the reviewed areas to the multidisciplinary approach adopted by the EfS Initiative. To conclude, several research topics that should be addressed in the near future are proposed
