41,265 research outputs found
Quantifying critical thinking: Development and validation of the Physics Lab Inventory of Critical thinking (PLIC)
Introductory physics lab instruction is undergoing a transformation, with
increasing emphasis on developing experimentation and critical thinking skills.
These changes present a need for standardized assessment instruments to
determine the degree to which students develop these skills through
instructional labs. In this article, we present the development and validation
of the Physics Lab Inventory of Critical thinking (PLIC). We define critical
thinking as the ability to use data and evidence to decide what to trust and
what to do. The PLIC is a 10-question, closed-response assessment that probes
student critical thinking skills in the context of physics experimentation.
Using interviews and data from 5584 students at 29 institutions, we
demonstrate, through qualitative and quantitative means, the validity and
reliability of the instrument at measuring student critical thinking skills.
This establishes a valuable new assessment instrument for instructional labs.Comment: 16 pages, 4 figure
Dynamic weight parameter for the Random Early Detection (RED) in TCP networks
This paper presents the Weighted Random Early Detection (WTRED) strategy for congestion handling in TCP networks. WTRED provides an adjustable weight parameter to increase the sensitivity of the average queue size in RED gateways to the changes in the actual queue size. This modification, over the original RED proposal, helps gateways minimize the mismatch between average and actual queue sizes in router buffers. WTRED is compared with RED and FRED strategies using the NS-2 simulator. The results suggest that WTRED outperforms RED and FRED. Network performance has been measured using throughput, link utilization, packet loss and delay
Cosmological redshift distortion: deceleration, bias and density parameters from future redshift surveys of galaxies
The observed two-point correlation functions of galaxies in redshift space
become anisotropic due to the geometry of the universe as well as due to the
presence of the peculiar velocity field. On the basis of linear perturbation
theory, we expand the induced anisotropies of the correlation functions with
respect to the redshift , and obtain analytic formulae to infer the
deceleration parameter , the density parameter and the
derivative of the bias parameter at in terms of the
observable statistical quantities. The present method does not require any
assumption of the shape and amplitude of the underlying fluctuation spectrum,
and thus can be applied to future redshift surveys of galaxies including the
Sloan Digital Sky Survey. We also evaluate quantitatively the systematic error
in estimating the value of from a galaxy
redshift survey on the basis of a conventional estimator for which
neglects both the geometrical distortion effect and the time evolution of the
parameter . If the magnitude limit of the survey is as faint as 18.5
(in B-band) as in the case of the Sloan Digital Sky Survey, the systematic
error ranges between -20% and 10% depending on the cosmological parameters.
Although such systematic errors are smaller than the statistical errors in the
current surveys, they will dominate the expected statistical error for future
surveys.Comment: 9 pages, 5 figs, aastex, ApJ in press, replaced version includes
minor correction
The motion of bubbles inside drops in containerless processing
A theoretical model of thermocapillary bubble motion inside a drop, located in a space laboratory, due to an arbitrary axisymmetric temperature distribution on the drop surface was constructed. Typical results for the stream function and temperature fields as well as the migration velocity of the bubble were obtained in the quasistatic limit. The motion of bubbles in a rotating body of liquid was studied experimentally, and an approximate theoretical model was developed. Comparison of the experimental observations of the bubble trajectories and centering times with theoretical predictions lends qualified support to the theory
Mathematical Modelling of Different Types of Body Support Surface for Pressure Ulcer Prevention
Pressure ulcer is a common problem for today’s healthcare industry. It occurs due to external load applied to the skin. Also when the subject is immobile for a longer period of time and there is continuous load applied to a particular area of human body, blood flow gets reduced and as a result pressure ulcer develops. Body support surface has a significant role in preventing ulceration so it is important to know the characteristics of support surface under loading conditions. In this paper we have presented mathematical models of different types of viscoelastic materials and also we have shown the validation of our simulation results with experiments
The synergistic effects of slip ring-brush design and materials
The design, fabrication, and subsequent testing of four power slip rings for synchronous orbit application are described. The synergistic effects of contact materials and slip ring-brush design are studied by means of frequent and simultaneous recording of friction, wear, and electrical noise. Data generated during the test period are presented along with post test analysis data
Measuring the galaxy power spectrum and scale-scale correlations with multiresolution-decomposed covariance -- I. method
We present a method of measuring galaxy power spectrum based on the
multiresolution analysis of the discrete wavelet transformation (DWT). Since
the DWT representation has strong capability of suppressing the off-diagonal
components of the covariance for selfsimilar clustering, the DWT covariance for
popular models of the cold dark matter cosmogony generally is diagonal, or
(scale)-diagonal in the scale range, in which the second scale-scale
correlations are weak. In this range, the DWT covariance gives a lossless
estimation of the power spectrum, which is equal to the corresponding Fourier
power spectrum banded with a logarithmical scaling. In the scale range, in
which the scale-scale correlation is significant, the accuracy of a power
spectrum detection depends on the scale-scale or band-band correlations. This
is, for a precision measurements of the power spectrum, a measurement of the
scale-scale or band-band correlations is needed. We show that the DWT
covariance can be employed to measuring both the band-power spectrum and second
order scale-scale correlation. We also present the DWT algorithm of the binning
and Poisson sampling with real observational data. We show that the alias
effect appeared in usual binning schemes can exactly be eliminated by the DWT
binning. Since Poisson process possesses diagonal covariance in the DWT
representation, the Poisson sampling and selection effects on the power
spectrum and second order scale-scale correlation detection are suppressed into
minimum. Moreover, the effect of the non-Gaussian features of the Poisson
sampling can be calculated in this frame.Comment: AAS Latex file, 44 pages, accepted for publication in Ap
Accurate radial velocity and metallicity of the Large Magellanic Cloud old globular clusters NGC1928 and NGC1939
We present results obtained from spectroscopic observations of red giants located in the fields of the Large Magellanic Cloud (LMC) globular clusters (GCs) NGC1928 and NGC1939. We used the GMOS and AAOmega+2dF spectrographs to obtain spectra centred on the Ca II triplet, from which we derived individual radial velocities (RVs) and metallicities. From cluster members we derived mean RVs of RVNGC1928 = 249.58±4.65 km s-1 and RVNGC1939 = 258.85±2.08 km s-1, and mean metallicities of [Fe/H]NGC1928 = -1.30±0.15 dex and [Fe/H]NGC1939 = -2.00±0.15 dex. We found that both GCs have RVs and positions consistent with being part of the LMC disc, so that we rule out any possible origin, but in the same galaxy. By computing the best solution of a disc that fully contains each GC, we obtained circular velocities for the 15 known LMC GCs. We found that 11/15 of the GCs share the LMC rotation derived from HST and Gaia DR2 proper motions. This outcome reveals that the LMC disc existed since the very early epoch of the galaxy formation and experienced the steep relatively fast chemical enrichment shown by its GC metallicities. The four remaining GCs turned out to have circular velocities not compatible with an in situ cluster formation, but rather with being stripped from the SMC.Fil: Piatti, Andres Eduardo. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hwang, N.. Korea Astronomy And Space Science Institute; Corea del SurFil: Cole, A. A.. University of Tasmania; AustraliaFil: Angelo, M. S.. Laboratorio Nacional de Astrofisica; BrasilFil: Emptage, B.. University of Tasmania; Australi
- …
