3,210 research outputs found
Relativistic positioning: four-dimensional numerical approach in Minkowski space-time
We simulate the satellite constellations of two Global Navigation Satellite
Systems: Galileo (EU) and GPS (USA). Satellite motions are described in the
Schwarzschild space-time produced by an idealized spherically symmetric non
rotating Earth. The trajectories are then circumferences centered at the same
point as Earth. Photon motions are described in Minkowski space-time, where
there is a well known relation, Coll, Ferrando & Morales-Lladosa (2010),
between the emission and inertial coordinates of any event. Here, this relation
is implemented in a numerical code, which is tested and applied. The first
application is a detailed numerical four-dimensional analysis of the so-called
emission coordinate region and co-region. In a second application, a GPS
(Galileo) satellite is considered as the receiver and its emission coordinates
are given by four Galileo (GPS) satellites. The bifurcation problem (double
localization) in the positioning of the receiver satellite is then pointed out
and discussed in detail.Comment: 16 pages, 9 figures, published (online) in Astrophys. Space Sc
Complexity measures and uncertainty relations of the high-dimensional harmonic and hydrogenic systems
In this work we find that not only the Heisenberg-like uncertainty products
and the R\'enyi-entropy-based uncertainty sum have the same first-order values
for all the quantum states of the -dimensional hydrogenic and
oscillator-like systems, respectively, in the pseudoclassical ()
limit but a similar phenomenon also happens for both the
Fisher-information-based uncertainty product and the Shannon-entropy-based
uncertainty sum, as well as for the Cr\'amer-Rao and Fisher-Shannon
complexities. Moreover, we show that the LMC (L\'opez-Ruiz-Mancini-Calvet) and
LMC-R\'enyi complexity measures capture the hydrogenic-harmonic difference in
the high dimensional limit already at first order
Positioning systems in Minkowski space-time: from emission to inertial coordinates
The coordinate transformation between emission coordinates and inertial
coordinates in Minkowski space-time is obtained for arbitrary configurations of
the emitters. It appears that a positioning system always generates two
different coordinate domains, namely, the front and the back emission
coordinate domains. For both domains, the corresponding covariant expression of
the transformation is explicitly given in terms of the emitter world-lines.
This task requires the notion of orientation of an emitter configuration. The
orientation is shown to be computable from the emission coordinates for the
users of a `central' region of the front emission coordinate domain. Other
space-time regions associated with the emission coordinates are also outlined.Comment: 20 pages; 1 figur
On the degrees of freedom of a semi-Riemannian metric
A semi-Riemannian metric in a n-manifold has n(n-1)/2 degrees of freedom,
i.e. as many as the number of components of a differential 2-form. We prove
that any semi-Riemannian metric can be obtained as a deformation of a constant
curvature metric, this deformation being parametrized by a 2-for
On the classification of type D spacetimes
We give a classification of the type D spacetimes based on the invariant
differential properties of the Weyl principal structure. Our classification is
established using tensorial invariants of the Weyl tensor and, consequently,
besides its intrinsic nature, it is valid for the whole set of the type D
metrics and it applies on both, vacuum and non-vacuum solutions. We consider
the Cotton-zero type D metrics and we study the classes that are compatible
with this condition. The subfamily of spacetimes with constant argument of the
Weyl eigenvalue is analyzed in more detail by offering a canonical expression
for the metric tensor and by giving a generalization of some results about the
non-existence of purely magnetic solutions. The usefulness of these results is
illustrated in characterizing and classifying a family of Einstein-Maxwell
solutions. Our approach permits us to give intrinsic and explicit conditions
that label every metric, obtaining in this way an operational algorithm to
detect them. In particular a characterization of the Reissner-Nordstr\"{o}m
metric is accomplished.Comment: 29 pages, 0 figure
Real null coframes in general relativity and GPS type coordinates
Based on work of Derrick, Coll, and Morales, we define a `symmetric' null
coframe with {\it four real null covectors}. We show that this coframe is
closely related to the GPS type coordinates recently introduced by Rovelli.Comment: Latex script, 9 pages, 4 figures; references added to work of
Derrick, Coll, and Morales, 1 new figur
A robust SNP barcode for typing Mycobacterium tuberculosis complex strains
Strain-specific genomic diversity in the Mycobacterium tuberculosis complex (MTBC) is an important factor in pathogenesis that may affect virulence, transmissibility, host response and emergence of drug resistance. Several systems have been proposed to classify MTBC strains into distinct lineages and families. Here, we investigate single-nucleotide polymorphisms (SNPs) as robust (stable) markers of genetic variation for phylogenetic analysis. We identify ~92k SNP across a global collection of 1,601 genomes. The SNP-based phylogeny is consistent with the gold-standard regions of difference (RD) classification system. Of the ~7k strain-specific SNPs identified, 62 markers are proposed to discriminate known circulating strains. This SNP-based barcode is the first to cover all main lineages, and classifies a greater number of sublineages than current alternatives. It may be used to classify clinical isolates to evaluate tools to control the disease, including therapeutics and vaccines whose effectiveness may vary by strain type
Neutrino physics at accelerators
Present and future neutrino experiments at accelerators are mainly concerned
with understanding the neutrino oscillation phenomenon and its implications.
Here a brief account of neutrino oscillations is given together with a
description of the supporting data. Some current and planned accelerator
neutrino experiments are also explained.Comment: 23 pages, 24 figures. Talk given at the Corfu Summer Institute on
Elementary Particle Physics 200
Atomic step motion during the dewetting of ultra-thin films
We report on three key processes involving atomic step motion during the
dewetting of thin solid films: (i) the growth of an isolated island nucleated
far from a hole, (ii) the spreading of a monolayer rim, and (iii) the zipping
of a monolayer island along a straight dewetting front. Kinetic Monte Carlo
results are in good agreement with simple analytical models assuming
diffusion-limited dynamics.Comment: 7 pages, 5 figure
- …
