2,041 research outputs found
The Importance of Comprehensive Assessment of the Sexually Abused Child
In the past few years public awareness of sexual abuse of children has increased, together with the recognition of its social, physical, and psychological effects (I). We must emphasize our role as diagnosticians in doing a comprehensive assessment of the sexually abused child. It is our professional responsibility to assess the general psychological status of the child before and after sexual abuse
Cardiac-restricted IGF-1Ea overexpression reduces the early accumulation of inflammatory myeloid cells and mediates expression of extracellular matrix remodelling genes after myocardial infarction
Strategies to limit damage and improve repair after myocardial infarct remain a major therapeutic goal in cardiology. Our previous studies have shown that constitutive expression of a locally acting insulin-like growth factor-1 Ea (IGF-1Ea) propeptide promotes functional restoration after cardiac injury associated with decreased scar formation. In the current study, we investigated the underlying molecular and cellular mechanisms behind the enhanced functional recovery. We observed improved cardiac function in mice overexpressing cardiac-specific IGF-1Ea as early as day 7 after myocardial infarction. Analysis of gene transcription revealed that supplemental IGF-1Ea regulated expression of key metalloproteinases (MMP-2 and MMP-9), their inhibitors (TIMP-1 and TIMP-2), and collagen types (Col 1α1 and Col 1α3) in the first week after injury. Infiltration of inflammatory cells, which direct the remodelling process, was also altered; in particular there was a notable reduction in inflammatory Ly6C+ monocytes at day 3 and an increase in anti-inflammatory CD206+ macrophages at day 7. Taken together, these results indicate that the IGF-1Ea transgene shifts the balance of innate immune cell populations early after infarction, favouring a reduction in inflammatory myeloid cells. This correlates with reduced extracellular matrix remodelling and changes in collagen composition that may confer enhanced scar elasticity and improved cardiac function
Intravenous delivery of adeno-associated virus 9-encoded IGF-1Ea propeptide improves post-infarct cardiac remodelling
The insulin-like growth factor Ea propeptide (IGF-1Ea) is a powerful enhancer of cardiac muscle growth and regeneration, also blocking age-related atrophy and beneficial in multiple skeletal muscle diseases. The therapeutic potential of IGF-1Ea compared with mature IGF-1 derives from its local action in the area of synthesis. We have developed an adeno-associated virus (AAV) vector for IGF-1Ea delivery to the heart to treat mice after myocardial infarction and examine the reparative effects of local IGF-1Ea production on left ventricular remodelling. A cardiotropic AAV9 vector carrying a cardiomyocyte-specific IGF-1Ea-luciferase bi-cistronic gene expression cassette (AAV9.IGF-1Ea) was administered intravenously to infarcted mice, 5 h after ischemia followed by reperfusion (I/R), as a model of myocardial infarction. Virally encoded IGF-1Ea in the heart improved global left ventricular function and remodelling, as measured by wall motion and thickness, 28 days after delivery, with higher viral titers yielding better improvement. The present study demonstrates that single intravenous AAV9-mediated IGF-1Ea Gene Therapy represents a tissue-targeted therapeutic approach to prevent the adverse remodelling after myocardial infarct
KELT-7b: A hot Jupiter transiting a bright V=8.54 rapidly rotating F-star
We report the discovery of KELT-7b, a transiting hot Jupiter with a mass of
MJ, radius of RJ, and an orbital
period of days. The bright host star (HD33643;
KELT-7) is an F-star with , Teff K, [Fe/H]
, and . It has a mass of
Msun, a radius of Rsun, and
is the fifth most massive, fifth hottest, and the ninth brightest star known to
host a transiting planet. It is also the brightest star around which KELT has
discovered a transiting planet. Thus, KELT-7b is an ideal target for detailed
characterization given its relatively low surface gravity, high equilibrium
temperature, and bright host star. The rapid rotation of the star (
km/s) results in a Rossiter-McLaughlin effect with an unusually large amplitude
of several hundred m/s. We find that the orbit normal of the planet is likely
to be well-aligned with the stellar spin axis, with a projected spin-orbit
alignment of degrees. This is currently the second most
rapidly rotating star to have a reflex signal (and thus mass determination) due
to a planetary companion measured.Comment: Accepted to The Astronomical Journa
GJ 1252 b: A 1.2 R\u3csub\u3e⊕\u3c/sub\u3e Planet Transiting An M3 Dwarf At 20.4 pc
We report the discovery of GJ 1252 b, a planet with a radius of 1.193 ± 0.074 R⊕ and an orbital period of 0.52 days around an M3-type star (0.381 ± 0.019 M⊕, 0.391 ± 0.020 R⊕) located 20.385 ± 0.019 pc away. We use Transiting Exoplanet Survey Satellite (TESS) data, ground-based photometry and spectroscopy, Gaia astrometry, and high angular resolution imaging to show that the transit signal seen in the TESS data must originate from a transiting planet. We do so by ruling out all false-positive scenarios that attempt to explain the transit signal as originating from an eclipsing stellar binary. Precise Doppler monitoring also leads to a tentative mass measurement of 2.09 ± 0.56 M⊕. The host star proximity, brightness (V = 12.19 mag, K = 7.92 mag), low stellar activity, and the system\u27s short orbital period make this planet an attractive target for detailed characterization, including precise mass measurement, looking for other objects in the system, and planet atmosphere characterization
Higgs-Boson Mass Limits and Precise Measurements beyond the Standard Model
The triviality and vacuum stability bounds on the Higgs-boson mass (\mh)
were revisited in presence of weakly-coupled new interactions parameterized in
a model-independent way by effective operators of dimension 6. The constraints
from precision tests of the Standard Model were taken into account. It was
shown that for the scale of new physics in the region \Lambda \simeq 2 \div 50
\tev the Standard Model triviality upper bound remains unmodified whereas it
is natural to expect that the lower bound derived from the requirement of
vacuum stability is substantially modified depending on the scale \La and
strength of coefficients of effective operators. A natural generalization of
the standard triviality condition leads also to a substantial reduction of the
allowed region in the (\Lambda,\mh) space.Comment: 18 pages 3 eps figures. The discussion in the appendix was modified
slightly and some typographical errors were correcte
Phage Therapy: Using evolution to our advantage
Many harmful species of bacteria have evolved to gain resistance to most common antibiotics, leading to infections that are very hard to treat because of the overuse of antibiotics. As a solution for this problem we are using phage therapy and evolution to our advantage. Bacteriophage or also called phage is a virus that infects and replicates within bacteria and archaea. In this poster, I will describe the different experiments that I have conducted into developing a new therapy in my internship with Felix Biotechnology that could save us from the next global problem
A Universal Phase Diagram for PMN-xPT and PZN-xPT
The phase diagram of the Pb(Mg1/3Nb2/3)O3 and PbTiO3 solid solution (PMN-xPT)
indicates a rhombohedral ground state for x < 0.32. X-ray powder measurements
by Dkhil et al. show a rhombohedrally split (222) Bragg peak for PMN-10%PT at
80 K. Remarkably, neutron data taken on a single crystal of the same compound
with comparable q-resolution reveal a single resolution-limited (111) peak down
to 50 K, and thus no rhombohedral distortion. Our results suggest that the
structure of the outer layer of these relaxors differs from that of the bulk,
which is nearly cubic, as observed in PZN by Xu et al.Comment: Replaced Fig. 3 with better versio
Limits on a Composite Higgs Boson
Precision electroweak data are generally believed to constrain the Higgs
boson mass to lie below approximately 190 GeV at 95% confidence level. The
standard Higgs model is, however, trivial and can only be an effective field
theory valid below some high energy scale characteristic of the underlying
non-trivial physics. Corrections to the custodial isospin violating parameter T
arising from interactions at this higher energy scale dramatically enlarge the
allowed range of Higgs mass. We perform a fit to precision electroweak data and
determine the region in the (m_H, Delta T) plane that is consistent with
experimental results. Overlaying the estimated size of corrections to T arising
from the underlying dynamics, we find that a Higgs mass up to 500 GeV is
allowed. We review two composite Higgs models which can realize the possibility
of a phenomenologically acceptable heavy Higgs boson. We comment on the
potential of improvements in the measurements of m_t and M_W to improve
constraints on composite Higgs models.Comment: 9 pages, 2 eps figures. Shortened for PRL; some references elminate
Interprofessional communication with hospitalist and consultant physicians in general internal medicine : a qualitative study
This study helps to improve our understanding of the collaborative environment in GIM, comparing the communication styles and strategies of hospitalist and consultant physicians, as well as the experiences of providers working with them. The implications of this research are globally important for understanding how to create opportunities for physicians and their colleagues to meaningfully and consistently participate in interprofessional communication which has been shown to improve patient, provider, and organizational outcomes
- …
