373 research outputs found
Nonlinear Development of the Secular Bar-mode Instability in Rotating Neutron Stars
We have modelled the nonlinear development of the secular bar-mode
instability that is driven by gravitational radiation-reaction (GRR) forces in
rotating neutron stars. In the absence of any competing viscous effects, an
initially uniformly rotating, axisymmetric polytropic star with a ratio
of rotational to gravitational potential energy is driven by
GRR forces to a bar-like structure, as predicted by linear theory. The pattern
frequency of the bar slows to nearly zero, that is, the bar becomes almost
stationary as viewed from an inertial frame of reference as GRR removes energy
and angular momentum from the star. In this ``Dedekind-like'' state, rotational
energy is stored as motion of the fluid in highly noncircular orbits inside the
bar. However, in less than 10 dynamical times after its formation, the bar
loses its initially coherent structure as the ordered flow inside the bar is
disrupted by what appears to be a purely hydrodynamical, short-wavelength,
``shearing'' type instability. The gravitational waveforms generated by such an
event are determined, and an estimate of the detectability of these waves is
presented.Comment: 25 pages, 9 figures, accepted for publication in ApJ, refereed
version, updated, for quicktime movie, see
http://www.phys.lsu.edu/~ou/movie/fmode/new/fmode.b181.om4.2e5.mo
Gravitational Waves from Rotating Proto-Neutron Stars
We study the effects of rotation on the quasi normal modes (QNMs) of a newly
born proto neutron star (PNS) at different evolutionary stages, until it
becomes a cold neutron star (NS). We use the
Cowling approximation, neglecting spacetime perturbations, and consider
different models of evolving PNS. The frequencies of the modes of a PNS are
considerably lower than those of a cold NS, and are further lowered by
rotation; consequently, if QNMs were excited in a sufficiently energetic
process, they would radiate waves that could be more easily detectable by
resonant-mass and interferometric detectors than those emitted by a cold NS. We
find that for high rotation rates, some of the g-modes become unstable via the
CFS instability; however, this instability is likely to be suppressed by
competing mechanisms before emitting a significant amount of gravitational
waves.Comment: 5 pages, proceedings of the 5th Edoardo Amaldi Conference On
Gravitational Wave
Ex-nihilo: Obstacles Surrounding Teaching the Standard Model
The model of the Big Bang is an integral part of the national curriculum for
England. Previous work (e.g. Baxter 1989) has shown that pupils often come into
education with many and varied prior misconceptions emanating from both
internal and external sources. Whilst virtually all of these misconceptions can
be remedied, there will remain (by its very nature) the obstacle of ex-nihilo,
as characterised by the question `how do you get something from nothing?' There
are two origins of this obstacle: conceptual (i.e. knowledge-based) and
cultural (e.g. deeply held religious viewpoints). The article shows how the
citizenship section of the national curriculum, coming `online' in England from
September 2002, presents a new opportunity for exploiting these.Comment: 6 pages. Accepted for publication in Physics E
Superradiant instability of large radius doubly spinning black rings
We point out that 5D large radius doubly spinning black rings with rotation
along S^1 and S^2 are afflicted by a robust instability. It is triggered by
superradiant bound state modes. The Kaluza-Klein momentum of the mode along the
ring is responsible for the bound state. This kind of instability in black
strings and branes was first suggested by Marolf and Palmer and studied in
detail by Cardoso, Lemos and Yoshida. We find the frequency spectrum and
timescale of this instability in the black ring background, and show that it is
active for large radius rings with large rotation along S^2. We identify the
endpoint of the instability and argue that it provides a dynamical mechanism
that introduces an upper bound in the rotation of the black ring. To estimate
the upper bound, we use the recent black ring model of Hovdebo and Myers, with
a minor extension to accommodate an extra small angular momentum. This
dynamical bound can be smaller than the Kerr-like bound imposed by regularity
at the horizon. Recently, the existence of higher dimensional black rings is
being conjectured. They will be stable against this mechanism.Comment: 21 pages, 3 figures. Overall minor improvements in discussions added.
Matches published version in PR
Stochastic processes, galactic star formation, and chemical evolution. Effects of accretion, stripping, and collisions in multiphase multi-zone models
This paper reports simulations allowing for stochastic accretion and mass
loss within closed and open systems modeled using a previously developed
multi-population, multi-zone (halo, thick disk, thin disk) treatment. The star
formation rate is computed as a function of time directly from the model
equations and all chemical evolution is followed without instantaneous
recycling. Several types of simulations are presented here: (1) a closed system
with bursty mass loss from the halo to the thick disk, and from the thick to
the thin disk, in separate events to the thin disk; (2) open systems with
random environmental (extragalactic) accretion, e.g. by infall of high velocity
clouds directly to the thin disk; (3) schematic open system single and multiple
collision events and intracluster stripping. For the open models, the mass of
the Galaxy has been explicitly tracked with time. We present the evolution of
the star formation rate, metallicity histories, and concentrate on the light
elements. We find a wide range of possible outcomes, including an explanation
for variations in the Galactic D/H ratio, and highlight the problems for
uniquely reconstructing star forming histories from contemporary abundance
measurements.Comment: 12 pages, 12 Postscript figures, uses A&A style macros. Accepted for
publication by Astronomy & Astrophysic
Superradiant instabilities of rotating black branes and strings
Black branes and strings are generally unstable against a certain sector of
gravitational perturbations. This is known as the Gregory-Laflamme instability.
It has been recently argued that there exists another general instability
affecting many rotating extended black objects. This instability is in a sense
universal, in that it is triggered by any massless field, and not just
gravitational perturbations. Here we investigate this novel mechanism in
detail. For this instability to work, two ingredients are necessary: (i) an
ergo-region, which gives rise to superradiant amplification of waves, and (ii)
``bound'' states in the effective potential governing the evolution of the
particular mode under study. We show that the black brane Kerr_4 x R^p is
unstable against this mechanism, and we present numerical results for
instability timescales for this case. On the other hand, and quite
surprisingly, black branes of the form Kerr_d x R^p are all stable against this
mechanism for d>4. This is quite an unexpected result, and it stems from the
fact that there are no stable circular orbits in higher dimensional black hole
spacetimes, or in a wave picture, that there are no bound states in the
effective potential. We also show that it is quite easy to simulate this
instability in the laboratory with acoustic black branes.Comment: 19 pages, 10 figures. v2: Enlarged discussion on the necessary
conditions for the existence of instabilit
The X-Ray Properties of the Optically Brightest Mini-BAL Quasars from the Sloan Digital Sky Survey
We have compiled a sample of 14 of the optically brightest radio-quiet
quasars (~~17.5 and ~~1.9) in the Sloan Digital Sky Survey
Data Release 5 quasar catalog that have C IV mini-BALs present in their
spectra. X-ray data for 12 of the objects were obtained via a Chandra snapshot
survey using ACIS-S, while data for the other two quasars were obtained from
archival XMM-Newton observations. Joint X-ray spectral analysis shows the
mini-BAL quasars have a similar average power-law photon index
() and level of intrinsic absorption () as non-BMB (neither BAL nor mini-BAL) quasars.
Mini-BAL quasars are more similar to non-BMB quasars than to BAL quasars in
their distribution of relative X-ray brightness (assessed with
). Relative colors indicate mild dust reddening in the
optical spectra of mini-BAL quasars. Significant correlations between
and UV absorption properties are confirmed for a sample
of 56 sources combining mini-BAL and BAL quasars with high signal-to-noise
ratio rest-frame UV spectra, which generally supports models in which X-ray
absorption is important in enabling driving of the UV absorption-line wind. We
also propose alternative parametrizations of the UV absorption properties of
mini-BAL and BAL quasars, which may better describe the broad absorption
troughs in some respects.Comment: ApJ accepted; 21 pages, 11 figures, and 9 table
Is the brick-wall model unstable for a rotating background?
The stability of the brick wall model is analyzed in a rotating background.
It is shown that in the Kerr background without horizon but with an inner
boundary a scalar field has complex-frequency modes and that, however, the
imaginary part of the complex frequency can be small enough compared with the
Hawking temperature if the inner boundary is sufficiently close to the horizon,
say at a proper altitude of Planck scale. Hence, the time scale of the
instability due to the complex frequencies is much longer than the relaxation
time scale of the thermal state with the Hawking temperature. Since ambient
fields should settle in the thermal state in the latter time scale, the
instability is not so catastrophic. Thus, the brick wall model is well defined
even in a rotating background if the inner boundary is sufficiently close to
the horizon.Comment: Latex, 17 pages, 1 figure, accepted for publication in Phys. Rev.
Instability of non-supersymmetric smooth geometries
Recently certain non-supersymmetric solutions of type IIb supergravity were
constructed [hep-th/0504181], which are everywhere smooth, have no horizons and
are thought to describe certain non-BPS microstates of the D1-D5 system. We
demonstrate that these solutions are all classically unstable. The instability
is a generic feature of horizonless geometries with an ergoregion. We consider
the endpoint of this instability and argue that the solutions decay to
supersymmetric configurations. We also comment on the implications of the
ergoregion instability for Mathur's `fuzzball' proposal.Comment: v2: typos corrected, reference adde
Quasinormal modes and classical wave propagation in analogue black holes
Many properties of black holes can be studied using acoustic analogues in the
laboratory through the propagation of sound waves. We investigate in detail
sound wave propagation in a rotating acoustic (2+1)-dimensional black hole,
which corresponds to the ``draining bathtub'' fluid flow. We compute the
quasinormal mode frequencies of this system and discuss late-time power-law
tails. Due to the presence of an ergoregion, waves in a rotating acoustic black
hole can be superradiantly amplified. We compute superradiant reflection
coefficients and instability timescales for the acoustic black hole bomb, the
equivalent of the Press-Teukolsky black hole bomb. Finally we discuss
quasinormal modes and late-time tails in a non-rotating canonical acoustic
black hole, corresponding to an incompressible, spherically symmetric
(3+1)-dimensional fluid flow.Comment: 19 pages, 12 figures, ReVTeX4; v2: minor modifications and
correction
- …
