482 research outputs found
Scaling Bounded Model Checking By Transforming Programs With Arrays
Bounded Model Checking is one the most successful techniques for finding bugs
in program. However, model checkers are resource hungry and are often unable to
verify programs with loops iterating over large arrays.We present a
transformation that enables bounded model checkers to verify a certain class of
array properties. Our technique transforms an array-manipulating (ANSI-C)
program to an array-free and loop-free (ANSI-C) program thereby reducing the
resource requirements of a model checker significantly. Model checking of the
transformed program using an off-the-shelf bounded model checker simulates the
loop iterations efficiently. Thus, our transformed program is a sound
abstraction of the original program and is also precise in a large number of
cases - we formally characterize the class of programs for which it is
guaranteed to be precise. We demonstrate the applicability and usefulness of
our technique on both industry code as well as academic benchmarks
Efficient Certified RAT Verification
Clausal proofs have become a popular approach to validate the results of SAT
solvers. However, validating clausal proofs in the most widely supported format
(DRAT) is expensive even in highly optimized implementations. We present a new
format, called LRAT, which extends the DRAT format with hints that facilitate a
simple and fast validation algorithm. Checking validity of LRAT proofs can be
implemented using trusted systems such as the languages supported by theorem
provers. We demonstrate this by implementing two certified LRAT checkers, one
in Coq and one in ACL2
Dalitz Plot Analysis of the Decay D^+ --> K^- pi^+ pi^+ and Indication of a Low-Mass Scalar K pi Resonance
We study the Dalitz plot of the decay D^+ --> K^- pi^+ pi^+ with a sample of
15090 events from Fermilab experiment E791. Modeling the decay amplitude as the
coherent sum of known K pi resonances and a uniform nonresonant term, we do not
obtain an acceptable fit. If we allow the mass and width of the K^*_0(1430) to
float, we obtain values consistent with those from PDG but the chi^2 per degree
of freedom of the fit is still unsatisfactory. A good fit is found when we
allow for the presence of an additional scalar resonance, with mass 797 +/- 19
+/- 43 MeV/c^2 and width 410 +/- 43 +/- 87 MeV/c^2. The mass and width of the
K^*_0(1430) become 1459 +/- 7 +/- 5 MeV/c^2 and 175 +/- 12 +/- 12 MeV/c^2,
respectively. Our results provide new information on the scalar sector in
hadron spectroscopy.Comment: Accepted for publication in Physical Review Letter
Experimental evidence for a light and broad scalar resonance in decay
From a sample of decay, we find
. Using a coherent amplitude analysis
to fit the Dalitz plot of this decays, we find strong evidence that a scalar
resonance of mass MeV/ and width MeV/ accounts for approximately half of all decays.Comment: 10 pages, 3 eps figure
Mass Splitting and Production of and Measured in N Interactions
From a sample of decaying to the
final state, we have observed, in the hadroproduction experiment E791 at
Fermilab, and through
their decays to . The mass difference ) is measured to be ; for
, we find .
The rate of production from decays of the triplet is
(22\pm 2\pm 3) {%} of the total production assuming equal rate
of production from all three, as measured for and .
We do not observe a statistically significant baryon-antibaryon
production asymmetry. The and spectra of from
decays are observed to be similar to those for all 's
produced.Comment: 15 pages, uuencoded postscript 3 figures uuencoded, tar-compressed
fil
Branching Fractions for D0 -> K+K- and D0 -> pi+pi-, and a Search for CP Violation in D0 Decays
Using the large hadroproduced charm sample collected in experiment E791 at
Fermilab, we have measured ratios of branching fractions for the two-body
singly-Cabibbo-suppressed charged decays of the D0:
(D0 -> KK)/(D0 -> Kpi) = 0.109 +- 0.003 +- 0.003,
(D0 -> pipi)/(D0 -> Kpi) = 0.040 +- 0.002 +- 0.003, and
(D0 -> KK)/(D0 -> pipi) = 2.75 +- 0.15 +- 0.16. We have looked for
differences in the decay rates of D0 and D0bar to the CP eigenstates K+K- and
pi+pi-, and have measured the CP asymmetry parameters
A_CP(K+K-) = -0.010 +- 0.049 +- 0.012 and
A_CP(pi+pi-) = -0.049 +- 0.078 +- 0.030, both consistent with zero.Comment: 10 Postscript pages, including 2 figures. Submitted to Phys. Lett.
Study of the decay and measurement of masses and widths
From a sample of 848 44 decays, we find
. Using a Dalitz plot analysis of this
three body decay, we find significant contributions from the channels
, , , , and
. We present also the values obtained for masses and widths of
the resonances and .Comment: 10 pages, 3 eps figure
Observation of a New Charmed Strange Meson
Using the CLEO-II detector, we have obtained evidence for a new meson
decaying to . Its mass is
{}~MeV/ and its width is ~MeV/. Although we do not
establish its spin and parity, the new meson is consistent with predictions for
an , , charmed strange state.Comment: 9 pages uuencoded compressed postscript (process with uudecode then
gunzip). hardcopies with figures can be obtained by sending mail to:
[email protected]
Measurement of the form-factor ratios for D+ --> K* l nu
The form factor ratios rv=V(0)/A1(0), r2=A2(0)/A1(0) and r3=A3(0)/A1(0) in
the decay D+ --> K* l nu, K* -->K-pi+ have been measured using data from charm
hadroproduction experiment E791 at Fermilab. From 3034 (595) signal
(background) events in the muon channel, we obtain rv=1.84+-0.11+-0.09,
r2=0.75+-0.08+-0.09 and, as a first measurement of r3, we find 0.04+-0.33
+-0.29. The values of the form factor ratios rv and r2 measured for the muon
channel are combined with the values of rv and r2 that we have measured in the
electron channel. The combined E791 results for the muon and electron channels
are rv=1.87+-0.08+-0.07 and r2=0.73+-0.06+-0.08.Comment: 9 pages + 3 figures ; submitted to PL
- …
