684 research outputs found
Online estimation of continuous gait phase for robotic transtibial prostheses based on adaptive oscillators
Continuous gait phase plays an important role in wearable robot control. This study focuses on the online estimation of continuous gait phase based on robotic transtibial prosthesis signals. First, we adopt the prosthetic foot deformation information to detect the heel strike as the start timing (reset 0 rad) of one gait cycle. Then we conduct the gait phase estimation based on adaptive oscillators using the prosthetic shank angle signal as input. Three transtibial amputees were recruited in this study and they walked on the treadmill at different speeds (slow, normal and fast) and on different ramps (10°, 5°, 0°, -5° and -10°) in the experiment. The root-meansquare error between online estimation result and ground truth gait phase is calculated. The maximum and minimum errors are 0.147 rad and 0.058 rad, and the corresponding ratios in one gait cycle are 2.34% and 0.92%. This study achieves good performance and provides an effective method to estimate the continuous gait phase, which will instruct robotic transtibial prosthesis control
Work-related psychological health and psychological type : a study among Catholic priests in Italy
This paper explores the connection between psychological type and burnout among a sample of 155 Catholic priests serving in Italy. Burnout was assessed by the Francis Burnout Inventory that draws on Bradburn's classic model of balanced affect to conceptualise poor work-related psychological health (burnout) in terms of high levels of emotional exhaustion in ministry in the absence of good levels of satisfaction in ministry. Psychological type was assessed by the Francis Psychological Type Scales that draw on the development of Jung's classic model that distinguishes between two orientations (extraversion and introversion), two perceiving functions (sensing and intuition), two judging functions (thinking and feeling), and two attitudes (judging and perceiving). The data demonstrated that higher levels of burnout were experienced by introverts than by extraverts. These findings are consistent with the view that the clerical profession has been shaped by inter-personal expectations that are more readily met by extraverts
Advancements and Challenges in the Development of Robotic Lower Limb Prostheses: a Systematic Review
Expert consensus document: A 'diamond' approach to personalized treatment of angina.
In clinical guidelines, drugs for symptomatic angina are classified as being first choice (β-blockers, calcium-channel blockers, short-acting nitrates) or second choice (ivabradine, nicorandil, ranolazine, trimetazidine), with the recommendation to reserve second-choice medications for patients who have contraindications to first-choice agents, do not tolerate them, or remain symptomatic. No direct comparisons between first-choice and second-choice treatments have demonstrated the superiority of one group of drugs over the other. Meta-analyses show that all antianginal drugs have similar efficacy in reducing symptoms, but provide no evidence for improvement in survival. The newer, second-choice drugs have more evidence-based clinical data that are more contemporary than is available for traditional first-choice drugs. Considering some drugs, but not others, to be first choice is, therefore, difficult. Moreover, double or triple therapy is often needed to control angina. Patients with angina can have several comorbidities, and symptoms can result from various underlying pathophysiologies. Some agents, in addition to having antianginal effects, have properties that could be useful depending on the comorbidities present and the mechanisms of angina, but the guidelines do not provide recommendations on the optimal combinations of drugs. In this Consensus Statement, we propose an individualized approach to angina treatment, which takes into consideration the patient, their comorbidities, and the underlying mechanism of disease
Photomanipulation of minimal synthetic cells : area increase, softening and interleaflet coupling of membrane models doped with azobenzene-lipid photoswitches
Light can effectively interrogate biological systems in a reversible and physiologically compatible manner with high spatiotemporal precision. Understanding the biophysics of photo-induced processes in bio-systems is crucial for achieving relevant clinical applications. Employing membranes doped with the photolipid azobenzene-phosphatidylcholine (azo-PC), we provide a holistic picture of light-triggered changes in membrane kinetics, morphology and material properties obtained from correlative studies on cell-sized vesicles, Langmuir monolayers, supported lipid bilayers and molecular dynamics simulations. Light-induced membrane area increase as high as ∼25% and a 10-fold decrease in the membrane bending rigidity is observed upon trans-to-cis azo-PC isomerization associated with membrane leaflet coupling and molecular curvature changes. Vesicle electrodeformation measurements and atomic force microscopy reveal that trans azo-PC bilayers are thicker than POPC bilayer but have higher specific membrane capacitance and dielectric constant suggesting an increased ability to store electric charges across the membrane. Lastly, incubating POPC vesicles with azo-PC solutions resulted in the insertion of azo-PC in the membrane enabling them to become photoresponsive. All these results demonstrate that light can be used to finely manipulate the shape, mechanical and electric properties of photolipid-doped minimal cell models and liposomal drug carriers, thus, presenting a promising therapeutic alternative for the repair of cellular disorders
Photomanipulation of Minimal Synthetic Cells: Area Increase, Softening, and Interleaflet Coupling of Membrane Models Doped with Azobenzene-Lipid Photoswitches
Light can effectively interrogate biological systems in a reversible and physiologically compatible manner with high spatiotemporal precision. Understanding the biophysics of photo-induced processes in bio-systems is crucial for achieving relevant clinical applications. Employing membranes doped with the photolipid azobenzene-phosphatidylcholine (azo-PC), a holistic picture of light-triggered changes in membrane kinetics, morphology, and material properties obtained from correlative studies on cell-sized vesicles, Langmuir monolayers, supported lipid bilayers, and molecular dynamics simulations is provided. Light-induced membrane area increases as high as ≈25% and a ten-fold decrease in the membrane bending rigidity is observed upon trans-to-cis azo-PC isomerization associated with membrane leaflet coupling and molecular curvature changes. Vesicle electrodeformation measurements and atomic force microscopy reveal that trans azo-PC bilayers are thicker than palmitoyl-oleoyl phosphatidylcholine (POPC) bilayers but have higher specific membrane capacitance and dielectric constant suggesting an increased ability to store electric charges across the membrane. Lastly, incubating POPC vesicles with azo-PC solutions results in the insertion of azo-PC in the membrane enabling them to become photoresponsive. All these results demonstrate that light can be used to finely manipulate the shape, mechanical and electric properties of photolipid-doped minimal cell models, and liposomal drug carriers, thus, presenting a promising therapeutic alternative for the repair of cellular disorders
Stability of core/shell quantum dots-role of pH and small organic ligands
The improvement of knowledge about the toxicity and even processability, and stability of quantum dots (QD) requires the understanding of the relationship between
the QD binding head group, surface structure, and interligand interaction. The scanned stripping chronopotentiometry
and absence of gradients and Nernstian equilibrium stripping techniques were used to determine the concentration of Cd dissolved from a polyacrylate-stabilized CdTe/CdS QD. The effects of various concentrations of small organic ligands such as citric acid, glycine, and histidine
and the roles of pH (4.5–8.5) and exposure time (0–48 h) were evaluated. The highest QD dissolution was obtained at the more acidic pH in absence of the ligands (52 %) a result
of the CdS shell solubility. At pH 8.5 the largest PAA ability to complex the dissolved Cd leads to a further QD solubility until the equilibrium is reached (24 % of dissolved Cd vs.4 % at pH 6.0). The citric acid presence resulted in greater QD dissolution, whereas glycine, an amino acid, acts against QD dissolution. Surprisingly, the presence of histidine, an amino acid with an imidazole functional group, leads to the formation of much strong Cd complexes over time, which may be non-labile, inducing variations in the local environment
of the QD surface
MITEx: A Portable Hand Exoskeleton for Assessment and Treatment in Neurological Rehabilitation
: This work describes the design and preliminary characterization of a novel portable hand exoskeleton for poststroke rehabilitation. The platform actively mobilizes the index-metacarpophalangeal (I-MCP) joint, and it additionally offers individual rigid support to distal degrees of freedom (DoFs) of the index and thumb. The test-bench characterization proves the capability of the device to render torques at the I-MCP level with high fidelity within frequencies of interest for the application (up to 3 Hz). The introduction of a feed-forward friction compensation at the actuator level lowers the output mechanical stiffness by 32%, contributing to a highly transparent behavior; moreover, the functionality of the platform in rendering different interaction strategies (patient/robot-in-charge) is tested with three healthy subjects, showing the potential of the device to provide assistance as needed
A Multimodal Sensory Apparatus for Robotic Prosthetic Feet Combining Optoelectronic Pressure Transducers and IMU
Timely and reliable identification of control phases is functional to the control of a powered robotic lower-limb prosthesis. This study presents a commercial energy-store-and-release foot prosthesis instrumented with a multimodal sensory system comprising optoelectronic pressure sensors (PS) and IMU. The performance was verified with eight healthy participants, comparing signals processed by two different algorithms, based on PS and IMU, respectively, for real-time detection of heel strike (HS) and toe-off (TO) events and an estimate of relevant biomechanical variables such as vertical ground reaction force (vGRF) and center of pressure along the sagittal axis (CoPy). The performance of both algorithms was benchmarked against a force platform and a marker-based stereophotogrammetric motion capture system. HS and TO were estimated with a time error lower than 0.100 s for both the algorithms, sufficient for the control of a lower-limb robotic prosthesis. Finally, the CoPy computed from the PS showed a Pearson correlation coefficient of 0.97 (0.02) with the same variable computed through the force platform
Perception of Time-Discrete Haptic Feedback on the Waist is Invariant with Gait Events
The effectiveness of haptic feedback devices highly depends on the perception of tactile stimuli, which differs across body parts and can be affected by movement. In this study, a novel wearable sensory feedback apparatus made of a pair of pressure-sensitive insoles and a belt equipped with vibrotactile units is presented; the device provides time-discrete vibrations around the waist, synchronized with biomechanically-relevant gait events during walking. Experiments with fifteen healthy volunteers were carried out to investigate users' tactile perception on the waist. Stimuli of different intensities were provided at twelve locations, each time synchronously with one pre-defined gait event (i.e. heel strike, flat foot or toe off), following a pseudo-random stimulation sequence. Reaction time, detection rate and localization accuracy were analyzed as functions of the stimulation level and site and the effect of gait events on perception was investigated. Results revealed that above-threshold stimuli (i.e. vibrations characterized by acceleration amplitudes of 1.92g and 2.13g and frequencies of 100 Hz and 150 Hz, respectively) can be effectively perceived in all the sites and successfully localized when the intertactor spacing is set to 10 cm. Moreover, it was found that perception of time-discrete vibrations was not affected by phase-related gating mechanisms, suggesting that the waist could be considered as a preferred body region for delivering haptic feedback during walking
- …
