267 research outputs found
Immersed boundary-finite element model of fluid-structure interaction in the aortic root
It has long been recognized that aortic root elasticity helps to ensure
efficient aortic valve closure, but our understanding of the functional
importance of the elasticity and geometry of the aortic root continues to
evolve as increasingly detailed in vivo imaging data become available. Herein,
we describe fluid-structure interaction models of the aortic root, including
the aortic valve leaflets, the sinuses of Valsalva, the aortic annulus, and the
sinotubular junction, that employ a version of Peskin's immersed boundary (IB)
method with a finite element (FE) description of the structural elasticity. We
develop both an idealized model of the root with three-fold symmetry of the
aortic sinuses and valve leaflets, and a more realistic model that accounts for
the differences in the sizes of the left, right, and noncoronary sinuses and
corresponding valve cusps. As in earlier work, we use fiber-based models of the
valve leaflets, but this study extends earlier IB models of the aortic root by
employing incompressible hyperelastic models of the mechanics of the sinuses
and ascending aorta using a constitutive law fit to experimental data from
human aortic root tissue. In vivo pressure loading is accounted for by a
backwards displacement method that determines the unloaded configurations of
the root models. Our models yield realistic cardiac output at physiological
pressures, with low transvalvular pressure differences during forward flow,
minimal regurgitation during valve closure, and realistic pressure loads when
the valve is closed during diastole. Further, results from high-resolution
computations demonstrate that IB models of the aortic valve are able to produce
essentially grid-converged dynamics at practical grid spacings for the
high-Reynolds number flows of the aortic root
URBAN MONITORING BASED ON SENTINEL-1 DATA USING PERMANENT SCATTERER INTERFEROMETRY AND SAR TOMOGRAPHY
A lot of research and development has been devoted to the exploitation of satellite SAR images for deformation measurement and monitoring purposes since Differential Interferometric Synthetic Apertura Radar (InSAR) was first described in 1989. In this work, we consider two main classes of advanced DInSAR techniques: Persistent Scatterer Interferometry and Tomographic SAR. Both techniques make use of multiple SAR images acquired over the same site and advanced procedures to separate the deformation component from the other phase components, such as the residual topographic component, the atmospheric component, the thermal expansion component and the phase noise. TomoSAR offers the advantage of detecting either single scatterers presenting stable proprieties over time (Persistent Scatterers) and multiple scatterers interfering within the same range-azimuth resolution cell, a significant improvement for urban areas monitoring. This paper addresses a preliminary inter-comparison of the results of both techniques, for a test site located in the metropolitan area of Barcelona (Spain), where interferometric Sentinel-1 data were analysed
Analysis of mining-induced terrain deformation using multitemporal distributed scatterer SAR interferometry
This work addresses a methodology based on the Interferometric Synthetic Aperture Radar (InSAR) to analyse and monitor ground motion phenomena induced by underground mining activities, in the Legnica-Glogow Copper District, south-western Poland. Two stacks of ascending and descending Sentinel-1 Synthetic Aperture Radar (SAR) images are processed with a small baseline multitemporal approach. A simple method to select interferograms with high coherence and eliminated images with low redundancy is implemented to optimize the interferogram netwrork. The estimated displacement maps and time series show the effect of both linear and impulsive ground motion and are validated against Global Navigation Satellite System (GNSS) measurements
Data analysis tools for persistent scatterer interferometry based on Sentinel-1 data
This paper describes a Persistent Scatterer Interferometry procedure to process Sentinel-1 SAR data. Its most original part includes a set of tools to perform two key processing stages: a first 2 + 1D phase unwrapping, prior to atmospheric filtering, and a second 2 + 1D phase unwrapping, to generate the deformation time series. These tools address two fundamental aspects of a Persistent Scatterer Interferometry processing chain: the quality control of the intermediate and final results, and the generation of quality indices to characterise such results. The effectiveness of the proposed tools is illustrated using a case study located in Catalonia (Northern Iberian Peninsula
The PSIG procedure to Persistent Scatterer Interferometry (PSI) using X-band and C-band Sentinel-1 data
A new approach to Persistent Scatterer Interferometry (PSI) data processing and analysis implemented in the PSI chain of the Geomatics (PSIG) Division of CTTC is used in this work. The flexibility of the PSIG procedure allowed evaluating two different processing chains of the PSIG procedure. A full PSIG procedure was implemented in the TerraSAR-X dataset while a reduced PSIG procedure was applied to the nine Sentinel-1 images available at the time of processing. The performance of the PSIG procedure is illustrated using X-band and C-band Sentinel-1 data and several examples of deformation maps covering different types of deformation phenomena are shown. \ua9 (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only
Exploitation of the full potential of persistent scatterer interferometry data
The potential of Persistent Scatterer Interferometry (PSI) for deformation monitoring has been increasing in the last years and it will continue to do so in the short future, especially with the advent of the Sentinel-1 mission. The full exploitation of this potential requires two important components. The first one is the improvement of the PSI processing tools, to achieve massive and systematic data processing capabilities. The second one is the need to increase the capabilities to correctly analyze and interpret the PSI results. The paper addresses both components. The key features of the PSI processing chain implemented by the authors, which is named PSIG chain, are described. This is followed by a brief discussion of the key elements needed to analyse and interpret the results of a given PSI processing. The paper concludes with a description of the results obtained by processing a full frame of very high resolution TerraSAR-X data that covers the metropolitan area of Barcelona (Spain)
DATA PROCESSING AND ANALYSIS TOOLS BASED ON GROUND-BASED SYNTHETIC APERTURE RADAR IMAGERY
The Ground-Based SAR (GBSAR) is a terrestrial remote sensing technique used to measure and monitor deformation. In this paper we describe two complementary approaches to derive deformation measurements using GBSAR data. The first approach is based on radar interferometry, while the second one exploits the GBSAR amplitude. In this paper we consider the so-called discontinuous GBSAR acquisition mode. The interferometric process is not always straightforward: it requires appropriate data processing and analysis tools. One of the main critical steps is phase unwrapping, which can critically affect the deformation measurements. In this paper we describe the procedure used at the CTTC to process and analyse discontinuous GBSAR data. In the second part of the paper we describe the approach based on GBSAR amplitude images and an image-matching method
- …
