487 research outputs found
The incentive gap: LULUCF and the Kyoto mechanism before and after Durban
To-date, forest resource-based carbon accounting in land use, land use change and forestry (LULUCF) under the United Nations Framework Convention on Climate Change (UNFCCC), Kyoto Protocol (KP), European Union (EU) and national level emission reduction schemes considers only a fraction of its potential and fails to adequately mobilize the LULUCF sector for the successful stabilization of atmospheric greenhouse gas (GHG) concentrations. Recent modifications at the 2011 COP17 meetings in Durban have partially addressed this basic problem, but leave room for improvement. The presence of an Incentive Gap (IG) continues to justify reform of the LULUCF carbon accounting framework. Frequently neglected in the climate change mitigation and adaptation literature, carbon accounting practices ultimately define the nuts and bolts of what counts and which resources (forest, forest-based or other) are favored and utilized. For Annex I countries in the Kyoto Mechanism, the Incentive Gap under forest management (FM) is significantly large: some 75% or more of potential forestry-based carbon sequestration is not effectively incentivized or mobilized for climate change mitigation and adaptation (Ellison etal. 2011a). In this paper, we expand our analysis of the Incentive Gap to incorporate the changes agreed in Durban and encompass both a wider set of countries and a larger set of omitted carbon pools. For Annex I countries, based on the first 2years of experience in the first Commitment Period (CP1) we estimate the IG in FM at approximately 88%. Though significantly reduced in CP2, the IG remains a problem. Thus our measure of missed opportunities under the Kyoto and UNFCCC framework - despite the changes in Durban - remains important. With the exception perhaps of increased energy efficiency, few sinks or sources of reduced emissions can be mobilized as effectively and efficiently as forests. Thus, we wonder at the sheer magnitude of this underutilized resource
Mineralogical and geochemical analysis of Fe-phases in drill-cores from the Triassic Stuttgart Formation at Ketzin CO₂ storage site before CO₂ arrival
Reactive iron (Fe) oxides and sheet silicate-bound Fe in reservoir rocks may affect the subsurface storage of CO2 through several processes by changing the capacity to buffer the acidification by CO2 and the permeability of the reservoir rock: (1) the reduction of three-valent Fe in anoxic environments can lead to an increase in pH, (2) under sulphidic conditions, Fe may drive sulphur cycling and lead to the formation of pyrite, and (3) the leaching of Fe from sheet silicates may affect silicate diagenesis. In order to evaluate the importance of Fe-reduction on the CO2 reservoir, we analysed the Fe geochemistry in drill-cores from the Triassic Stuttgart Formation (Schilfsandstein) recovered from the monitoring well at the CO2 test injection site near Ketzin, Germany. The reservoir rock is a porous, poorly to moderately cohesive fluvial sandstone containing up to 2–4 wt% reactive Fe. Based on a sequential extraction, most Fe falls into the dithionite-extractable Fe-fraction and Fe bound to sheet silicates, whereby some Fe in the dithionite-extractable Fe-fraction may have been leached from illite and smectite. Illite and smectite were detected in core samples by X-ray diffraction and confirmed as the main Fe-containing mineral phases by X-ray absorption spectroscopy. Chlorite is also present, but likely does not contribute much to the high amount of Fe in the silicate-bound fraction. The organic carbon content of the reservoir rock is extremely low (<0.3 wt%), thus likely limiting microbial Fe-reduction or sulphate reduction despite relatively high concentrations of reactive Fe-mineral phases in the reservoir rock and sulphate in the reservoir fluid. Both processes could, however, be fuelled by organic matter that is mobilized by the flow of supercritical CO2 or introduced with the drilling fluid. Over long time periods, a potential way of liberating additional reactive Fe could occur through weathering of silicates due to acidification by CO2
Beyond the 'Grid-Lock' in Electricity Interconnectors: The Case of Germany and Poland
The common European electricity market requires both market integration and transmission grid expansion, including trans-border interconnectors. Although the benefits of increased interconnectivity are widely acknowledged, expansion of interconnectors is often very slow. This paper gathers insights on the reasons behind this grid-lock drawing on the study of the German-Polish border. Although two interconnectors already exist, the trade is blocked by unplanned electricity loop flows. A third interconnector has been discussed for years, but saw little progress in spite of declarations of support on both sides. Drawing on the existing literature on the topic of grid expansion we identify four hypotheses for the grid-lock: inadequate financing; diverging interests; governance and administration problems; and different actors' motivations, trust and security perceptions. We evaluate them using the empirical material gathered through document analysis and stakeholder interviews conducted in Germany and Poland. None of the hypotheses on its own can explain the gridlock. However, while financing has not been a major obstacle, divergent interests had an impact on the project delay, administrative and governance problems are a great hindrance on the technical level, while motivations influence interstate political relations and policy shaping. EU support and closer bilateral cooperation provide opportunities to address these challenges
The influence of the internet for pedagogical innovation: using twitter to promote online collaborative learning
A network to understand the changing socio‐ecology of the southern African woodlands (SEOSAW): Challenges, benefits, and methods
Findings from the Socio-Ecological Observatory for the Southern African Woodlands (SEOSAW) will underpin the sustainability of two of the largest industries on the continent: wood fuels and timber.
The article describes a new network of researchers’ (SEOSAW) work in long-term, in situ, measurements that will characterize the changing socio-ecology of the woodlands of southern Africa. These woodlands encompass the largest savanna in the world, hugely important to rural and urban livelihoods, but chronically under-studied. A new development is the use of data from permanent sample plots (PSP) in Bayesian model-data fusion analyses of ecosystem carbon cycles. The article includes an extensive bibliography.National Environmental Research Counci
How did we do that? Histories and political economies of rapid and just transitions
It is becoming increasingly clear that deep and rapid transitions in technologies, infrastructures and ways of organising the economy are imperative if we are to live safely within planetary boundaries. But what historical precedents are there for such profound shifts within short spaces of time, and what were the enabling conditions? When have transitions in sectors such as energy, food, finance and transport come about before, and how would they be brought about again? Do these episodes shed any analogous light on our current collective predicament? This paper develops an account of the politics and prospects of deeper transitions towards sustainability based on a critical empirical, but theoretically informed, reading of previous socio-technical transitions. The scale and urgency of our current ecological predicament is daunting and can be disempowering in the absence of strategic thinking about when analogous challenges have been encountered before and how societies have sought to overcome them. Providing a combination of concrete empirical examples drawn both from academic literature and a series of public workshops reflecting on these themes, this paper seeks to provide a basis for understanding as well as engaging with the scope for accelerated transitions within and beyond capitalism
Coal and Climate Change
This overview adopts a critical social science perspective to examine the state of play and potential futures for coal in the context of climate change. It introduces key trends in coal consumption, production and trade, before appraising the relevant literature. Finding surprisingly little literature directly focussed on coal and climate change compared with related fields, it appraises existing work and highlights key areas for future work. In addition to established bodies of work on the situated politics of coal and the political economy of coal, new work calling for demand side policies to be supplemented with supply side policies highlights the increasing importance of how normative contestations drive debates over coal, suggesting that future work needs to engage not only much more directly with climate change as an issue, but particularly with the place of coal in a just transition. Because of coal’s mammoth contribution to climate change and the complex political economy which drives its production and consumption, it is likely that coal will remain at the centre of difficult questions about the relationship between climate action and development for some time
Low‐carbon transition risks for finance
The transition to a low‐carbon economy will entail a large‐scale structural change. Some industries will have to expand their relative economic weight, while other industries, especially those directly linked to fossil fuel production and consumption, will have to decline. Such a systemic shift may have major repercussions on the stability of financial systems, via abrupt asset revaluations, defaults on debt, and the creation of bubbles in rising industries. Studies on previous industrial transitions have shed light on the financial transition risks originating from rapidly rising “sunrise” industries. In contrast, a similar conceptual understanding of risks from declining “sunset” industries is currently lacking. We substantiate this claim with a critical review of the conceptual and historical literature, which also shows that most literature either examines structural change in the real economy, or risks to financial stability, but rarely both together. We contribute to filling this research gap by developing a consistent theoretical framework of the drivers, transmission channels, and impacts of the phase‐out of carbon‐intensive industries on the financial system and on the feedback from the financial system into the rest of the economy. We also review the state of play of policy aiming to protect the financial system from transition risks and spell out research implications
- …
