12,916 research outputs found
The economic optimisation of the main parameters of the 3-GeV electron booster synchrotron for DIAMOND
Atomic-scale structure of the SrTiO3(001)-c(6x2) reconstruction: Experiments and first-principles calculations
The c(6x2) is a reconstruction of the SrTiO3(001) surface that is formed
between 1050-1100oC in oxidizing annealing conditions. This work proposes a
model for the atomic structure for the c(6x2) obtained through a combination of
results from transmission electron diffraction, surface x-ray diffraction,
direct methods analysis, computational combinational screening, and density
functional theory. As it is formed at high temperatures, the surface is complex
and can be described as a short-range ordered phase featuring microscopic
domains composed of four main structural motifs. Additionally, non-periodic
TiO2 units are present on the surface. Simulated scanning tunneling microscopy
images based on the electronic structure calculations are consistent with
experimental images
Recommended from our members
Identification of candidate genes affecting Delta9-tetrahydrocannabinol biosynthesis in Cannabis sativa.
RNA isolated from the glands of a Delta(9)-tetrahydrocannabinolic acid (THCA)-producing strain of Cannabis sativa was used to generate a cDNA library containing over 100 000 expressed sequence tags (ESTs). Sequencing of over 2000 clones from the library resulted in the identification of over 1000 unigenes. Candidate genes for almost every step in the biochemical pathways leading from primary metabolites to THCA were identified. Quantitative PCR analysis suggested that many of the pathway genes are preferentially expressed in the glands. Hexanoyl-CoA, one of the metabolites required for THCA synthesis, could be made via either de novo fatty acids synthesis or via the breakdown of existing lipids. qPCR analysis supported the de novo pathway. Many of the ESTs encode transcription factors and two putative MYB genes were identified that were preferentially expressed in glands. Given the similarity of the Cannabis MYB genes to those in other species with known functions, these Cannabis MYBs may play roles in regulating gland development and THCA synthesis. Three candidates for the polyketide synthase (PKS) gene responsible for the first committed step in the pathway to THCA were characterized in more detail. One of these was identical to a previously reported chalcone synthase (CHS) and was found to have CHS activity. All three could use malonyl-CoA and hexanoyl-CoA as substrates, including the CHS, but reaction conditions were not identified that allowed for the production of olivetolic acid (the proposed product of the PKS activity needed for THCA synthesis). One of the PKS candidates was highly and specifically expressed in glands (relative to whole leaves) and, on the basis of these expression data, it is proposed to be the most likely PKS responsible for olivetolic acid synthesis in Cannabis glands
Investigating Perceptual Congruence Between Data and Display Dimensions in Sonification
The relationships between sounds and their perceived meaning and connotations are complex, making auditory perception an important factor to consider when designing sonification systems. Listeners often have a mental model of how a data variable should sound during sonification and this model is not considered in most data:sound mappings. This can lead to mappings that are difficult to use and can cause confusion. To investigate this issue, we conducted a magnitude estimation experiment to map how roughness, noise and pitch relate to the perceived magnitude of stress, error and danger. These parameters were chosen due to previous findings which suggest perceptual congruency between these auditory sensations and conceptual variables. Results from this experiment show that polarity and scaling preference are dependent on the data:sound mapping. This work provides polarity and scaling values that may be directly utilised by sonification designers to improve auditory displays in areas such as accessible and mobile computing, process-monitoring and biofeedback
Self-aligned fabrication process for silicon quantum computer devices
We describe a fabrication process for devices with few quantum bits (qubits),
which are suitable for proof-of-principle demonstrations of silicon-based
quantum computation. The devices follow the Kane proposal to use the nuclear
spins of 31P donors in 28Si as qubits, controlled by metal surface gates and
measured using single electron transistors (SETs). The accurate registration of
31P donors to control gates and read-out SETs is achieved through the use of a
self-aligned process which incorporates electron beam patterning, ion
implantation and triple-angle shadow-mask metal evaporation
Recent advances on IMF research
Here I discuss recent work on brown dwarfs, massive stars and the IMF in
general. The stellar IMF can be well described by an invariant two-part power
law in present-day star-formation events within the Local Group of galaxies. It
is nearly identical in shape to the pre-stellar core mass function. The
majority of brown dwarfs follow a separate IMF. Evidence from globular clusters
and ultra-compact dwarf galaxies has emerged that IMFs may have been top heavy
depending on the star-formation rate density. The IGIMF then ranges from bottom
heavy at low galaxy-wide star formation rates to being top-heavy in
galaxy-scale star bursts.Comment: 6 pages, LaTeX, to appear in The Labyrinth of Star Formation, 18-22
June 2012, Crete, (eds.) D. Stamatellos, S. Goodwin, and D. Ward-Thompson,
Springer, in press; replaced version: very minor corrections plus the
addition of reference Smith & Lucey (2013) on the bottom-heavy IMF in
elliptical galaxie
Simplicial quantum dynamics
Present-day quantum field theory can be regularized by a decomposition into
quantum simplices. This replaces the infinite-dimensional Hilbert space by a
high-dimensional spinor space and singular canonical Lie groups by regular spin
groups. It radically changes the uncertainty principle for small distances.
Gaugeons, including the gravitational, are represented as bound fermion-pairs,
and space-time curvature as a singular organized limit of quantum
non-commutativity.
Keywords: Quantum logic, quantum set theory, quantum gravity, quantum
topology, simplicial quantization.Comment: 25 pages. 1 table. Conference of the International Association for
Relativistic Dynamics, Taiwan, 201
The Small Unit Cell Reconstructions of SrTiO3 (111)
We analyze the basic structural units of simple reconstructions of the (111)
surface of SrTiO3 using density functional calculations. The prime focus is to
answer three questions: what is the most appropriate functional to use; how
accurate are the energies; what are the dominant low-energy structures and
where do they lie on the surface phase diagram. Using test calculations of
representative small molecules we compare conventional GGA with higher-order
methods such as the TPSS meta-GGA and on-site hybrid methods PBE0 and TPSSh,
the later being the most accurate. There are large effects due to reduction of
the metal d oxygen sp hybridization when using the hybrid methods which are
equivalent to a dynamical GGA+U, which leads to rather substantial improvements
in the atomization energies of simple calibration molecules, even though the
d-electron density for titanium compounds is rather small. By comparing the
errors of the different methods we are able to generate an estimate of the
theoretical error, which is about 0.25eV per 1x1 unit cell, with changes of
0.5-1.0 eV per 1x1 cell with the more accurate method relative to conventional
GGA. An analysis of the plausible structures reveals an unusual low-energy
TiO2-rich configuration with an unexpected distorted trigonal biprismatic
structure. This structure can act as a template for layers of either TiO or
Ti2O3, consistent with experimental results as well as, in principle, Magnelli
phases. The results also suggest that both the fracture surface and the
stoichiometric SrTiO3 (111) surface should spontaneously disproportionate into
SrO and TiO2 rich domains, and show that there are still surprises to be found
for polar oxide surfaces.Comment: 14 pages, 4 Figure
Determination of the refractive index of organic material from atmospheric aerosol over the visible wavelength range using optical tweezers
Optical trapping combined with Mie spectroscopy is a new technique used to record the refractive index of insoluble organic material extracted from atmospheric aerosol samples over a wide wavelength range. The refractive index of the insoluble organic extracts was shown to follow a Cauchy equation between 460 and 700 nm for organic aerosol extracts collected from urban (London) and remote (Antarctica) locations. Cauchy coefficients for the remote sample were for the Austral summer and gave the Cauchy coefficients of A = 1.467 and B = 1000 nm2 with a real refractive index of 1.489 at a wavelength of 589 nm. Cauchy coefficients for the urban samples varied with season, with extracts collected during summer having Cauchy coefficients of A = 1.465 ± 0.005 and B = 4625 ± 1200 nm2 with a representative real refractive index of 1.478 at a wavelength of 589 nm, whilst samples extracted during autumn had larger Cauchy coefficients of A = 1.505 and B = 600 nm2 with a representative real refractive index of 1.522 at a wavelength of 589 nm. The refractive index of absorbing aerosol was also recorded. The absorption Ångström exponent was determined for woodsmoke and humic acid aerosol extract. Typical values of the Cauchy coefficient for the woodsmoke aerosol extract were A = 1.541 ± 0.03 and B = 14 800 ± 2900 nm2, resulting in a real refractive index of 1.584 ± 0.007 at a wavelength of 589 nm and an absorption Ångström exponent of 8.0. The measured values of refractive index compare well with previous monochromatic or very small wavelength range measurements of refractive index. In general, the real component of the refractive index increases from remote to urban to woodsmoke. A one-dimensional radiative-transfer calculation of the top-of-the-atmosphere albedo was applied to model an atmosphere containing a 3 km thick layer of aerosol comprising pure water, pure insoluble organic aerosol, or an aerosol consisting of an aqueous core with an insoluble organic shell. The calculation demonstrated that the top-of-the-atmosphere albedo increases by 0.01 to 0.04 for pure organic particles relative to water particles of the same size and that the top-of-the-atmosphere albedo increases by 0.03 for aqueous core-shell particles as volume fraction of the shell material increases to 25 %
How primary care can contribute to good mental health in adults.
The need for support for good mental health is enormous. General support for good mental health is needed for 100% of the population, and at all stages of life, from early childhood to end of life. Focused support is needed for the 17.6% of adults who have a mental disorder at any time, including those who also have a mental health problem amongst the 30% who report having a long-term condition of some kind. All sectors of society and all parts of the NHS need to play their part. Primary care cannot do this on its own. This paper describes how primary care practitioners can help stimulate such a grand alliance for health, by operating at four different levels - as individual practitioners, as organisations, as geographic clusters of organisations and as policy-makers
- …
