1,359 research outputs found
Conditioned place preference and locomotor activity in response to methylphenidate, amphetamine and cocaine in mice lacking dopamine D4 receptors
Methylphenidate (MP) and amphetamine (AMPH) are the most frequently prescribed medications for the treatment of attention-deficit/hyperactivity disorder (ADHD). Both drugs are believed to derive their therapeutic benefit by virtue of their dopamine (DA)-enhancing effects, yet an explanation for the observation that some patients with ADHD respond well to one medication but not to the other remains elusive. The dopaminergic effects of MP and AMPH are also thought to underlie their reinforcing properties and ultimately their abuse. Polymorphisms in the human gene that codes for the DA D4 receptor (D4R) have been repeatedly associated with ADHD and may correlate with the therapeutic as well as the reinforcing effects of responses to these psychostimulant medications. Conditioned place preference (CPP) for MP, AMPH and cocaine were evaluated in wild-type (WT) mice and their genetically engineered littermates, congenic on the C57Bl/6J background, that completely lack D4Rs (knockout or KO). In addition, the locomotor activity in these mice during the conditioning phase of CPP was tested in the CPP chambers. D4 receptor KO and WT mice showed CPP and increased locomotor activity in response to each of the three psychostimulants tested. D4R differentially modulates the CPP responses to MP, AMPH and cocaine. While the D4R genotype affected CPP responses to MP (high dose only) and AMPH (low dose only) it had no effects on cocaine. Inasmuch as CPP is considered an indicator of sensitivity to reinforcing responses to drugs these data suggest a significant but limited role of D4Rs in modulating conditioning responses to MP and AMPH. In the locomotor test, D4 receptor KO mice displayed attenuated increases in AMPH-induced locomotor activity whereas responses to cocaine and MP did not differ. These results suggest distinct mechanisms for D4 receptor modulation of the reinforcing (perhaps via attenuating dopaminergic signalling) and locomotor properties of these stimulant drugs. Thus, individuals with D4 receptor polymorphisms might show enhanced reinforcing responses to MP and AMPH and attenuated locomotor response to AMPH.Fil: Thanos, P. K.. NIAAA Intramural Program; Estados Unidos. Brookhaven National Laboratory; Estados Unidos. Universidad de Buenos Aires; ArgentinaFil: Bermeo, C.. Brookhaven National Laboratory; Estados UnidosFil: Rubinstein, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Suchland, K. L.. Oregon Health & Science University; Estados UnidosFil: Wang, G. J.. Brookhaven National Laboratory; Estados UnidosFil: Grandy, David K.. Oregon Health & Science University; Estados UnidosFil: Volkow, N. D.. NIAAA Intramural Program; Estados Unido
Decreased dopamine activity predicts relapse in methamphetamine abusers.
Studies in methamphetamine (METH) abusers showed that the decreases in brain dopamine (DA) function might recover with protracted detoxification. However, the extent to which striatal DA function in METH predicts recovery has not been evaluated. Here we assessed whether striatal DA activity in METH abusers is associated with clinical outcomes. Brain DA D2 receptor (D2R) availability was measured with positron emission tomography and [(11)C]raclopride in 16 METH abusers, both after placebo and after challenge with 60 mg oral methylphenidate (MPH) (to measure DA release) to assess whether it predicted clinical outcomes. For this purpose, METH abusers were tested within 6 months of last METH use and then followed up for 9 months of abstinence. In parallel, 15 healthy controls were tested. METH abusers had lower D2R availability in caudate than in controls. Both METH abusers and controls showed decreased striatal D2R availability after MPH and these decreases were smaller in METH than in controls in left putamen. The six METH abusers who relapsed during the follow-up period had lower D2R availability in dorsal striatum than in controls, and had no D2R changes after MPH challenge. The 10 METH abusers who completed detoxification did not differ from controls neither in striatal D2R availability nor in MPH-induced striatal DA changes. These results provide preliminary evidence that low striatal DA function in METH abusers is associated with a greater likelihood of relapse during treatment. Detection of the extent of DA dysfunction may be helpful in predicting therapeutic outcomes
Effects of depressive symptoms and peripheral DAT methylation on neural reactivity to alcohol cues in alcoholism
In alcohol-dependent (AD) patients, alcohol cues induce strong activations in
brain areas associated with alcohol craving and relapse, such as the nucleus
accumbens (NAc) and amygdala. However, little is known about the influence of
depressive symptoms, which are common in AD patients, on the brain’s
reactivity to alcohol cues. The methylation state of the dopamine transporter
gene (DAT) has been associated with alcohol dependence, craving and
depression, but its influence on neural alcohol cue reactivity has not been
tested. Here, we compared brain reactivity to alcohol cues in 38 AD patients
and 17 healthy controls (HCs) using functional magnetic resonance imaging and
assessed the influence of depressive symptoms and peripheral DAT methylation
in these responses. We show that alcoholics with low Beck’s Depression
Inventory scores (n=29) had higher cue-induced reactivity in NAc and amygdala
than those with mild/moderate depression scores (n=9), though subjective
perception of craving was higher in those with mild/moderate depression
scores. We corroborated a higher DAT methylation in AD patients than HCs, and
showed higher DAT methylation in AD patients with mild/moderate than low
depression scores. Within the AD cohort, higher methylation predicted craving
and, at trend level (P=0.095), relapse 1 year after abstinence. Finally, we
show that amygdala cue reactivity correlated with craving and DAT methylation
only in AD patients with low depression scores. These findings suggest that
depressive symptoms and DAT methylation are associated with alcohol craving
and associated brain processes in alcohol dependence, which may have important
consequences for treatment. Moreover, peripheral DAT methylation may be a
clinically relevant biomarker in AD patients
Public understandings of addiction: where do neurobiological explanations fit?
Developments in the field of neuroscience, according to its proponents, offer the prospect of an enhanced understanding and treatment of addicted persons. Consequently, its advocates consider that improving public understanding of addiction neuroscience is a desirable aim. Those critical of neuroscientific approaches, however, charge that it is a totalising, reductive perspective–one that ignores other known causes in favour of neurobiological explanations. Sociologist Nikolas Rose has argued that neuroscience, and its associated technologies, are coming to dominate cultural models to the extent that 'we' increasingly understand ourselves as 'neurochemical selves'. Drawing on 55 qualitative interviews conducted with members of the Australian public residing in the Greater Brisbane area, we challenge both the 'expectational discourses' of neuroscientists and the criticisms of its detractors. Members of the public accepted multiple perspectives on the causes of addiction, including some elements of neurobiological explanations. Their discussions of addiction drew upon a broad range of philosophical, sociological, anthropological, psychological and neurobiological vocabularies, suggesting that they synthesised newer technical understandings, such as that offered by neuroscience, with older ones. Holding conceptual models that acknowledge the complexity of addiction aetiology into which new information is incorporated suggests that the impact of neuroscientific discourse in directing the public's beliefs about addiction is likely to be more limited than proponents or opponents of neuroscience expect
Brain monoamine oxidase A activity predicts trait aggression
The genetic deletion of monoamine oxidase A (MAO A), an enzyme that breaks down the monoamine neurotransmitters norepinephrine, serotonin, and dopamine, produces aggressive phenotypes across species. Therefore, a common polymorphism in the MAO A gene (MAOA, Mendelian Inheritance in Men database number 309850, referred to as high or low based on transcription in non-neuronal cells) has been investigated in a number of externalizing behavioral and clinical phenotypes. These studies provide evidence linking the low MAOA genotype and violent behavior but only through interaction with severe environmental stressors during childhood. Here, we hypothesized that in healthy adult males the gene product of MAO A in the brain, rather than the gene per se, would be associated with regulating the concentration of brain amines involved in trait aggression. Brain MAO A activity was measured in vivo in healthy nonsmoking men with positron emission tomography using a radioligand specific for MAO A (clorgyline labeled with carbon 11). Trait aggression was measured with the multidimensional personality questionnaire (MPQ). Here we report for the first time that brain MAO A correlates inversely with the MPQ trait measure of aggression (but not with other personality traits) such that the lower the MAO A activity in cortical and subcortical brain regions, the higher the self-reported aggression (in both MAOA genotype groups) contributing to more than one-third of the variability. Because trait aggression is a measure used to predict antisocial behavior, these results underscore the relevance of MAO A as a neurochemical substrate of aberrant aggression
Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain
The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here
Deletion of the GABAA α2-subunit does not alter self dministration of cocaine or reinstatement of cocaine seeking
Rationale
GABAA receptors containing α2-subunits are highly represented in brain areas that are involved in motivation and reward, and have been associated with addiction to several drugs, including cocaine. We have shown previously that a deletion of the α2-subunit results in an absence of sensitisation to cocaine.
Objective
We investigated the reinforcing properties of cocaine in GABAA α2-subunit knockout (KO) mice using an intravenous self-administration procedure.
Methods
α2-subunit wildtype (WT), heterozygous (HT) and KO mice were trained to lever press for a 30 % condensed milk solution. After implantation with a jugular catheter, mice were trained to lever press for cocaine (0.5 mg/kg/infusion) during ten daily sessions. Responding was extinguished and the mice tested for cue- and cocaine-primed reinstatement. Separate groups of mice were trained to respond for decreasing doses of cocaine (0.25, 0.125, 0.06 and 0.03 mg/kg).
Results
No differences were found in acquisition of lever pressing for milk. All genotypes acquired self-administration of cocaine and did not differ in rates of self-administration, dose dependency or reinstatement. However, whilst WT and HT mice showed a dose-dependent increase in lever pressing during the cue presentation, KO mice did not.
Conclusions
Despite a reported absence of sensitisation, motivation to obtain cocaine remains unchanged in KO and HT mice. Reinstatement of cocaine seeking by cocaine and cocaine-paired cues is also unaffected. We postulate that whilst not directly involved in reward perception, the α2-subunit may be involved in modulating the “energising” aspect of cocaine’s effects on reward-seeking
Disorders of compulsivity: a common bias towards learning habits.
Why do we repeat choices that we know are bad for us? Decision making is characterized by the parallel engagement of two distinct systems, goal-directed and habitual, thought to arise from two computational learning mechanisms, model-based and model-free. The habitual system is a candidate source of pathological fixedness. Using a decision task that measures the contribution to learning of either mechanism, we show a bias towards model-free (habit) acquisition in disorders involving both natural (binge eating) and artificial (methamphetamine) rewards, and obsessive-compulsive disorder. This favoring of model-free learning may underlie the repetitive behaviors that ultimately dominate in these disorders. Further, we show that the habit formation bias is associated with lower gray matter volumes in caudate and medial orbitofrontal cortex. Our findings suggest that the dysfunction in a common neurocomputational mechanism may underlie diverse disorders involving compulsion.This study was funded by the WT fellowship grant for VV (093705/Z/
10/Z) and Cambridge NIHR Biomedical Research Centre. VV and NAH are Wellcome
Trust (WT) intermediate Clinical Fellows. YW is supported by the Fyssen Fondation
and MRC Studentships. PD is supported by the Gatsby Charitable Foundation. JEG has
received grants from the National Institute of Drug Abuse and the National Center for
Responsible Gaming. TWR and BJS are supported on a WT Programme Grant
(089589/Z/09/Z). The BCNI is supported by a WT and MRC grant.This is the final published version. It's also available from Molecular Psychiatry at http://www.nature.com/mp/journal/vaop/ncurrent/full/mp201444a.html
Cannabis, cannabinoids and health: a review of evidence on risks and medical benefits
The legalization of cannabis for medical and recreational purposes has progressed internationally. Cannabis and cannabinoids are advocated for a plethora of medical indications. An increasing number of medical and nonmedical users regularly consume large doses of delta-9-Tetrahydrocannabinol (THC), the main active component of cannabis. Aim: to summarize the evidence on (1) risks of recreational cannabis use and (2) effectiveness and safety of medicinal cannabis. Findings on recreational use: Cannabis is mostly used to experience its acute rewarding effects. Regular use of high THC products can produce addiction (cannabis use disorder or CUD). Acute consumption of high THC doses (including unintentionally) can cause time-limited mental, gastrointestinal, and cardiovascular problems and motor vehicle accidents. Chronic patterns of cannabis use have been associated with multiple adverse outcomes that are of particular concern among adolescents and young adults, such as, disrupted learning, impaired cognitive performance, reduced educational attainment and an increased risk of CUD, psychosis/schizophrenia, mood and anxiety disorders and suicidal behaviors. There is debate about the extent to which cannabis use is a cause of these adverse outcomes. Physical health risks (e.g., respiratory and cardiovascular, prematurity and restricted fetal growth, hyperemesis syndrome among others) have also been linked with repeated consumption of cannabis with a high THC content. Findings on medical cannabis use: Herbal cannabis, medicines from extracted or synthetized cannabinoids—often used as adjuvants to standard medicines—may produce small to modest benefits. This is primarily the case in treating chronic pain, muscle spasticity, chemotherapy-induced nausea and vomiting, and refractory epilepsy (in the case of cannabidiol, CBD). The evidence is inconclusive on their value in treating mental disorders and other medical conditions. Safety: Cannabis-based medicine is generally well tolerated. There is a risk of mild to moderate adverse effects and CUD
Emerging pharmacotherapy for cancer patients with cognitive dysfunction
Advances in the diagnosis and multi-modality treatment of cancer have increased survival rates for many cancer types leading to an increasing load of long-term sequelae of therapy, including that of cognitive dysfunction. The cytotoxic nature of chemotherapeutic agents may also reduce neurogenesis, a key component of the physiology of memory and cognition, with ramifications for the patient's mood and other cognition disorders. Similarly radiotherapy employed as a therapeutic or prophylactic tool in the treatment of primary or metastatic disease may significantly affect cognition. A number of emerging pharmacotherapies are under investigation for the treatment of cognitive dysfunction experienced by cancer patients. Recent data from clinical trials is reviewed involving the stimulants modafinil and methylphenidate, mood stabiliser lithium, anti-Alzheimer's drugs memantine and donepezil, as well as other agents which are currently being explored within dementia, animal, and cell culture models to evaluate their use in treating cognitive dysfunction
- …
