801 research outputs found

    Screening nuclear field fluctuations in quantum dots for indistinguishable photon generation

    Get PDF
    A semiconductor quantum dot can generate highly coherent and indistinguishable single photons. However, intrinsic semiconductor dephasing mechanisms can reduce the visibility of two-photon interference. For an electron in a quantum dot, a fundamental dephasing process is the hyperfine interaction with the nuclear spin bath. Here we directly probe the consequence of the fluctuating nuclear spins on the elastic and inelastic scattered photon spectra from a resident electron in a single dot. We find the nuclear spin fluctuations lead to detuned Raman scattered photons which are distinguishable from both the elastic and incoherent components of the resonance fluorescence. This significantly reduces two-photon interference visibility. However, we demonstrate successful screening of the nuclear spin noise which enables the generation of coherent single photons that exhibit high visibility two-photon interference.Comment: 5 pages, 4 figures + Supplementary Informatio

    Coherent Parton Showers with Local Recoils

    Full text link
    We outline a new formalism for dipole-type parton showers which maintain exact energy-momentum conservation at each step of the evolution. Particular emphasis is put on the coherence properties, the level at which recoil effects do enter and the role of transverse momentum generation from initial state radiation. The formulated algorithm is shown to correctly incorporate coherence for soft gluon radiation. Furthermore, it is well suited for easing matching to next-to-leading order calculations.Comment: 24 pages, 3 figure

    Experimental estimation of the dimension of classical and quantum systems

    Full text link
    An overwhelming majority of experiments in classical and quantum physics make a priori assumptions about the dimension of the system under consideration. However, would it be possible to assess the dimension of a completely unknown system only from the results of measurements performed on it, without any extra assumption? The concept of a dimension witness answers this question, as it allows one to bound the dimension of an unknown classical or quantum system in a device-independent manner, that is, only from the statistics of measurements performed on it. Here, we report on the experimental demonstration of dimension witnesses in a prepare and measure scenario. We use pairs of photons entangled in both polarization and orbital angular momentum to generate ensembles of classical and quantum states of dimensions up to 4. We then use a dimension witness to certify their dimensionality as well as their quantum nature. Our results open new avenues for the device-independent estimation of unknown quantum systems and for applications in quantum information science.Comment: See also similar, independent and jointly submitted work of J. Ahrens et al., quant-ph/1111.127

    An appropriate tool for entrepreneurial learning in SMEs? The case of the 20Twenty Leadership Programme

    Get PDF
    The 20Twenty Leadership Programme was developed by Cardiff Metropolitan University as an executive education programme to be delivered within South Wales to small businesses. It is funded by the European Social Fund (ESF) and administered by the Welsh European Funding Office and has the key aim of developing SME’s growth potential via a range of leadership and management skills, including a focus on ‘soft’ skills. The focus of this paper is to place the 20Twenty Leadership Programme within the wider context of entrepreneurship policy and SME training initiatives in particular, and then to examine the rationale and delivery methods of the Programme in relation to these. It also reflects on the Programme’s success (or otherwise) to date where possible. Finally, the paper seeks to suggest fruitful areas of further research both in terms of the 20Twenty Leadership Programme itself, but also with regard to evaluation in relation to other parallel programmes, and to SME training initiatives more generally

    Improved Parton Showers at Large Transverse Momenta

    Full text link
    Several methods to improve the parton-shower description of hard processes by an injection of matrix-element-based information have been presented over the years. In this article we study (re)weighting schemes for the first/hardest emission. One objective is to provide a consistent matching of the POWHEG next-to-leading order generator to the Pythia shower algorithms. Another is to correct the default behaviour of these showers at large transverse momenta, based on a comparison with real-emission matrix elements

    Hadronization effects in event shape moments

    Full text link
    We study the moments of hadronic event shapes in e+ee^+e^- annihilation within the context of next-to-next-to-leading order (NNLO) perturbative QCD predictions combined with non-perturbative power corrections in the dispersive model. This model is extended to match upon the NNLO perturbative prediction. The resulting theoretical expression has been compared to experimental data from JADE and OPAL, and a new value for αs(MZ)\alpha_s(M_Z) has been determined, as well as of the average coupling α0\alpha_0 in the non-perturbative region below μI=2\mu_I=2 GeV within the dispersive model: \alpha_s(M_Z)&=0.1153\pm0.0017(\mathrm{exp})\pm0.0023(\mathrm{th}),\alpha_0&=0.5132\pm0.0115(\mathrm{exp})\pm0.0381(\mathrm{th}), The precision of the αs(MZ)\alpha_s(M_Z) value has been improved in comparison to the previously available next-to-leading order analysis. We observe that the resulting power corrections are considerably larger than those estimated from hadronization models in multi-purpose event generator programs.Comment: 23 pages, 5 figures, 15 tables. Few minor changes. Version accepted for publication in European Physical Journal C
    corecore