3,973 research outputs found
Effect of nonlinearity on the dynamics of a particle in dc field-induced systems
Dynamics of a particle in a perfect chain with one nonlinear impurity and in
a perfect nonlinear chain under the action of dc field is studied numerically.
The nonlinearity appears due to the coupling of the electronic motion to
optical oscillators which are treated in adiabatic approximation.
We study for both the low and high values of field strength. Three different
range of nonlinearity is obtained where the dynamics is different. In low and
intermediate range of nonlinearity, it reduces the localization. In fact in the
intermediate range subdiffusive behavior in the perfect nonlinear chain is
obtained for a long time. In all the cases a critical value of nonlinear
strength exists where self-trapping transition takes place. This critical value
depends on the system and the field strength. Beyond the self-trapping
transition nonlinearity enhances the localization.Comment: 9 pages, Revtex, 6 ps figures include
Does the QCD plasma contain propagating gluons?
Comparison of two appropriately chosen screening masses of colour singlet
operators in the pure glue QCD plasma indicates that at sufficiently high
temperature it contains a weakly-interacting massive quasi-particle with the
quantum numbers of the electric gluon. Still in the deconfined phase, but
closer to T_c, the same mass ratio is similar to that at zero temperature,
indicating that the propagating modes are more glueball-like, albeit with a
lower scale for the masses. We observe a continuity between these two regimes.Comment: 4 pages, 3 figure
Wave attenuation model for dephasing and measurement of conditional times
Inelastic scattering induces dephasing in mesoscopic systems. An analysis of
previous models to simulate inelastic scattering in such systems is presented
and also a relatively new model based on wave attenuation is introduced. The
problem of Aharonov-Bohm(AB) oscillations in conductance of a mesoscopic ring
is studied. We have shown that conductance is symmetric under flux reversal and
visibility of AB oscillations decay to zero as function of the incoherence
parameter, signalling dephasing. Further wave attenuation is applied to a
fundamental problem in quantum mechanics, i.e., the
conditional(reflection/transmission) times spent in a given region of space by
a quantum particle before scattering off from that region.Comment: 8 pages, 6 figures. Based on presentations by A. M. J and C. B at the
2nd Winter Institute on Foundations of Quantum theory, Quantum Optics and QIP
held at S N Bose National Centre for Basic Sciences, Kolkata, India, from
January 2-11, 200
Discrimination in the University in India
Despite changes to the status of women in India, the strong patriarchal traditions continue to shape the way that women take their place in Indian society. There are more opportunities for women in India today, inclusive of political, financial and working opportunities, but it is difficult not to notice that India is still a male dominated society
Economic liberalization and the antecedents of top management teams: evidence from Turkish 'big' business
There has been an increased interest in the last two decades in top management teams (TMTs) of business firms. Much of the research, however, has been US-based and concerned primarily with TMT effects on organizational outcomes. The present study aims to expand this literature by examining the antecedents of top team composition in the context of macro-level economic change in a late-industrializing country. The post-1980 trade and market reforms in Turkey provided the empirical setting. Drawing upon the literatures on TMT and chief executive characteristics together with punctuated equilibrium models of change and institutional theory, the article develops the argument that which firm-level factors affect which attributes of TMT formations varies across the early and late stages of economic liberalization. Results of the empirical investigation of 71 of the largest industrial firms in Turkey broadly supported the hypotheses derived from this premise. In the early stages of economic liberalization the average age and average organizational tenure of TMTs were related to the export orientation of firms, whereas in later stages, firm performance became a major predictor of these team attributes. Educational background characteristics of teams appeared to be under stronger institutional pressures, altering in different ways in the face of macro-level change
Quantum spin field effect transistor
We propose, theoretically, a new type of quantum field effect transistor that
operates purely on the flow of spin current in the absence of charge current.
This spin field effect transistor (SFET) is constructed without any magnetic
material, but with the help of spin flip mechanism provided by a rotating
external magnetic field of uniform strength. The SFET generates a constant
instantaneous spin current that is sensitively controllable by a gate voltage
as well as by the frequency and strength of the rotating field. The
characteristics of a Carbon nanotube based SFET is provided as an example
Meson screening masses from lattice QCD with two light and the strange quark
We present results for screening masses of mesons built from light and
strange quarks in the temperature range of approximately between 140 MeV to 800
MeV. The lattice computations were performed with 2+1 dynamical light and
strange flavors of improved (p4) staggered fermions along a line of constant
physics defined by a pion mass of about 220 MeV and a kaon mass of 500 MeV. The
lattices had temporal extents Nt = 4, 6 and 8 and aspect ratios of Ns / Nt \geq
4. At least up to a temperature of 140 MeV the pseudo-scalar screening mass
remains almost equal to the corresponding zero temperature pseudo-scalar (pole)
mass. At temperatures around 3Tc (Tc being the transition temperature) the
continuum extrapolated pseudo-scalar screening mass approaches very close to
the free continuum result of 2 \pi T from below. On the other hand, at high
temperatures the vector screening mass turns out to be larger than the free
continuum value of 2 \pi T. The pseudo-scalar and the vector screening masses
do not become degenerate even for a temperature as high as 4Tc. Using these
mesonic spatial correlation functions we have also investigated the restoration
of chiral symmetry and the effective restoration of the axial symmetry. We have
found that the vector and the axial-vector screening correlators become
degenerate, indicating chiral symmetry restoration, at a temperature which is
consistent with the QCD transition temperature obtained in previous studies. On
the other hand, the pseudo-scalar and the scalar screening correlators become
degenerate only at temperatures larger than 1.3Tc, indicating that the
effective restoration of the axial symmetry takes place at a temperature larger
than the QCD transition temperature.Comment: Published versio
Comparison between the two models of dephasing in mesoscopic systems
In mesoscopic systems to study the role of inelastic scattering on the phase
coherent motion of electrons two phenomenological models have been proposed. In
the first one, due to B\"uttiker, one adds a voltage probe into the system (or
in the scattering matrix). The second model invokes the complex (or optical)
potential in the system Hamiltonian. Studying a simple geometry of a metallic
loop in the presence of Aharonov-Bohm magnetic flux, we show that the two probe
conductance is symmetric in the reversal of the magnetic field in B\"uttiker's
approach. Whereas the two probe conductance within the complex potential model
is asymmetric in the magnetic flux reversal contrary to the expected behavior.Comment: 11 pages RevTex, 4 figures inculded, Communicated to PR
Roles of a 67-kDa polypeptide in reversal of protein synthesis inhibition in heme-deficient reticulocyte lysate.
Revealing the footprints of squark gluino production through Higgs search experiments at the Large Hadron Collider at 7 TeV and 14 TeV
The invariant mass distribution of the di-photons from the decay of the
lighter scalar Higgs boson(h) to be carefully measured by dedicated h search
experiments at the LHC may be distorted by the di-photons associated with the
squark-gluino events with much larger cross sections in Gauge Mediated
Supersymmetry Breaking (GMSB) models. This distortion if observed by the
experiments at the Large Hadron Collider at 7 TeV or 14 TeV, would disfavour
not only the standard model but various two Higgs doublet models with
comparable h - masses and couplings but without a sector consisting of new
heavy particles decaying into photons. The minimal GMSB (mGMSB) model
constrained by the mass bound on h from LEP and that on the lightest neutralino
from the Tevatron, produce negligible effects. But in the currently popular
general GMSB(GGMSB) models the tail of the above distribution may show
statistically significant excess of events even in the early stages of the LHC
experiments with integrated luminosity insufficient for the discovery of h. We
illustrate the above points by introducing several benchmark points in various
GMSB models - minimal as well as non-minimal. The same conclusion follows from
a detailed parameter scan in a simplified GGMSB model recently employed by the
CMS collaboration to interpret their searches in the di-photon + \etslash
channel. Other observables like the effective mass distribution of the
di-photon + X events may also reveal the presence of new heavy particles beyond
the Higgs sector. The contamination of the h mass peak and simple remedies are
also discussed.Comment: 23 pages, 7 figures, title and organization of the paper is changed,
detailed parameter scan in a simplified GGMSB model is added, conclusions and
old numerical results remain unchange
- …
